首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(ethylene‐2,6‐naphthalate) (PEN) nanofiber was prepared by a carbon dioxide (CO2) laser supersonic drawing. The CO2 laser supersonic drawing was carried out by irradiating the laser to the as‐spun PEN fiber in a low‐temperature supersonic jet. The supersonic jet was generated by blowing off air into a vacuum chamber from a fiber supplying orifice. The flow velocity from the orifice can be estimated by applying Graham's theorem from the pressure difference between the atmospheric pressure and the pressure of the vacuum chamber. The fastest flow velocity estimated was 396 m s?1 (Mach 1.15) at a chamber pressure of 6 KPa. The nanofiber obtained at Mach 1.15 was the oriented nanofibers with an average diameter of 0.259 μm, and its draw ratio estimated from the diameters before and after the drawing reached 430,822 times. The CO2 laser supersonic drawing is a new method to make nanofiber without using any solvent or removing the second component. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Akihiro Suzuki  Kyohei Arino 《Polymer》2010,51(8):1830-1836
Poly(ethylene terephthalate) (PET) nanosheets were fabricated by winding nanofibers onto a spool. The nanofibers were prepared by irradiating PET fibers with radiation from a carbon dioxide laser while drawing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. A new vacuum chamber was developed to produce nanosheets; it has seven fiber injection orifices and a spool to collect the nanofibers. A rectangular nanosheet that was 17 cm wide, 18 cm long, and 30 μm thick was obtained by collecting nanofibers for 10 min. The nanosheet is composed of nanofibers with an average fiber diameter of 350 nm. This technique is a novel method for producing nanosheets.  相似文献   

3.
Nylon 66 nanofibers were prepared by irradiating as‐spun nylon 66 fibers with radiation from a carbon dioxide (CO2) laser while drawing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. The fiber diameter depended on the drawing conditions used, such as laser power, chamber pressure, laser irradiation point, and fiber supply speed. A nanofiber obtained at a laser power of 20 W and a chamber pressure of 20 kPa had an average diameter of 0.337 μm and a draw ratio of 291,664, and the drawing speed in the CO2 laser supersonic drawing was 486 m s?1. The nanofibers showed two melting peaks at about 257 and 272°C. The lower melting peak is observed at the same temperature as that of the as‐spun fiber, whereas the higher melting peak is about 15°C higher than the lower one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40015.  相似文献   

4.
Poly(ethylene terephthalate) (PET) particles were prepared by the irradiation of PET fibers with a carbon dioxide (CO2) laser while atomizing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through a fiber injection orifice. The fibers are melted by laser heating and atomized by the supersonic jet at the outlet of the orifice. The PET particles produced by CO2 laser supersonic atomization conducted at a laser power of 34 W and at a chamber pressure of 10 kPa have an average particle size of 0.619 μm, high circularity, and a smooth surface that is not roughened by laser ablation. The novel CO2 laser supersonic atomization technique can be used to easily prepare polymeric nanoparticles of various thermoplastic polymers using only CO2 laser irradiation without the need for solvents and additives. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40909.  相似文献   

5.
Poly(p‐phenylene sulfide) (PPS) nanofibers are prepared by irradiating a PPS fiber with a carbon dioxide (CO2) laser while drawing it at supersonic speeds. A supersonic jet is generated by blowing air into a vacuum chamber through the fiber injection orifice. Nanofibers obtained at a laser power of 30 W and chamber pressure of 10 kPa exhibit an average diameter of 600 nm and a draw ratio of 110,000. Scanning electron microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction analyses are employed to investigate the relationships among the chamber pressure, fiber morphology, and crystallization behavior. The nanofibers exhibit two melting temperatures (Tm): approximately 280°C and 320°C. The endothermic peak at Tm = 280°C is ascribable to lamellar crystals and that at Tm = 320°C to the highly complete crystals, since the polymer molecular chain is highly oriented. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40922.  相似文献   

6.
In order to develop the structure of microporous PVDF membranes, PEG-400 was introduced into the polymer dope as a non-solvent additive. The hollow fiber membranes were prepared via a wet phase-inversion process and then used in the membrane contactor modules for CO2 stripping from water. By addition of different amounts of PEG-400, cloud points of the polymer dope were obtained to examine phase-inversion behavior. From FESEM analysis, the membrane structure changed from a finger-like to an approximately sponge-like morphology with the addition of 4 wt.% of PEG-400. The prepared membranes presented smaller mean pore size (0.13 μm) and significantly higher wetting pressure (550 kPa) compared to the plain membrane. From CO2 stripping test, at water velocity of 0.4 m/s, the PVDF membranes prepared by 4% PEG-400 demonstrated an approximate CO2 stripping flux of 4.5 × 10−5 (mol/m2 s) which is 125% higher than the flux of the plain membrane. It could be concluded that structurally developed hydrophobic PVDF hollow fiber membranes can be prepared by a controlled phase-inversion process to enhance the performance of gas–liquid membrane contactor.  相似文献   

7.
Akihiro Suzuki  Mahomi Kishi 《Polymer》2007,48(9):2729-2736
Poly(ethylene terephthalate) (PET) nonwoven fabric was prepared from microfibers obtained by using a carbon dioxide laser-thinning method. The PET nonwoven fabric obtained was made of the endless mircofibers with a uniform diameter without droplets. The fiber diameter can be varied by controlling airflow rate into the air jet and supplying speed of an original fiber into a laser-irradiating point. The fiber diameter decreased, and its birefringence increased as the airflow rate increased and the supplying speed decreased. When the microfiber prepared by irradiating the laser operated at a power density of 4.8 W cm−2 to the original fiber supplied at Ss = 0.15 m min−1 was dragged at an airflow rate of 30 L min−1, the thinnest microfiber with a diameter of 3.6 μm was obtained.  相似文献   

8.
Porous polyvinylidene fluoride (PVDF) and polyetherimide (PEI) hollow fiber membranes incorporating polyethylene glycol (PEG) were prepared via spinning process for CO2 membrane stripping. CO2 loaded diethanolamine solution was used as liquid absorbent while N2 was used as a strip gas. The characterization study of the fibers was carried out in terms of permeation test, contact angle measurement and liquid entry pressure (wetting pressure). Performance study via membrane contactor stripping was carried out at specific operating condition. The experimental results showed that PVDF membrane have high gas permeation, effective surface porosity and contact angle despite having lower liquid entry pressure in comparison with PEI membrane. PVDF-PEG membrane showed the highest stripping flux of 4.0 × 10−2 mol m−2 s−1 at 0.7 ms−1 compared to that of PEI membrane. Although the stripping flux for PEI-PEG membranes was slightly lower than PVDF membrane (e.g. 3.5 × 10−2 mol m−2 s−1 at liquid velocity of 0.85 ms−1), the membrane wetting pressure of PEI membrane is higher than hydrophobic PVDF membrane. Long term performance of both membranes showed severe flux reduction but started to level-off after 30 h of operation.  相似文献   

9.
The hydrogenation of CO, CO + CO2, and CO2 over titania-supported Rh, Rh–Fe, and Fe catalysts was carried out in a fixed-bed micro-reactor system nominally operating at 543 K, 20 atm, 20 cm3 min− 1 gas flow (corresponding to a weight hourly space velocity (WHSV) of 8000 cm3 gcat− 1 h− 1), with a H2:(CO + CO2) ratio of 1:1. A comparative study of CO and CO2 hydrogenation shows that while Rh and Rh–Fe/TiO2 catalysts exhibited appreciable selectivity to ethanol during CO hydrogenation, they functioned primarily as methanation catalysts during CO2 hydrogenation. The Fe/TiO2 sample was primarily a reverse water gas shift catalyst. Higher reaction temperatures favored methane formation over alcohol synthesis and reverse water gas shift. The effect of pressure was not significant over the range of 10 to 20 atm.  相似文献   

10.
Panfeng Han 《Fuel》2007,86(4):585-596
The motivation of this study is to explore the feasibility of extending the EGR (exhaust gas recirculation) diluent tolerance for methane/air mixtures with reformer gas (CO and H2). A preheated cylindrical combustion chamber was used to measure the laminar burning velocity of methane/air mixture with variations of EGR diluent, reformer gas, temperature and pressure. The experiments were carried out at the range of initial temperature from 298 K to 498 K and initial pressure from 1 atm to 5 atm. The maximum EGR fraction is 40%. Reformer gas was introduced to raise the burning velocity of methane/EGR mixture to the undiluted level. Results indicate that the reformer gas has potential to improve the burning velocity while reducing the nitric oxide emission.  相似文献   

11.
This paper describes two phase (solid particles/gas) flow in a supersonic nozzle that is part of a device for micromolecular vaccine/drug delivery. It accelerates micro solid particles to high speeds sufficient to penetrate the viable epidermis layer to achieve the pharmaceutical effect. Helium is used as the driving gas for the solid particles because of its high compressibility factor. A numerical parametric study was performed for gas pressures ranging between 3 and 6 MPa and gold particles of diameters 1.8 μm and 5 μm. The computed results show that uniform particle velocity was achieved at standoff distance of 2 exit diameters (De) downstream of the device exit with particles concentrated on the supersonic core jet. Increasing the helium pressure from 3 to 6 MPa caused an increase in the particle velocity of 24% for particles with a diameter of 1.8 μm and 7% for particles of diameter 5 μm at the standoff distance. Furthermore increased gas pressure has adverse effect on particles concentration. As the inlet pressure increases, the particles are concentrated more at the core of the nozzle. Semi-empirical particle penetration calculation confirms the numerical results that the 5 μm particles penetration distance is 45-135 μm and the 1.8 μm diameter penetration is 35-95 μm beneath the skin. Comparison of different geometries has been done in order to understand each section function and to gain optimum performance.  相似文献   

12.
Wang Wei 《Powder Technology》2011,212(3):403-409
The calculation reliability of pressure drop and gas-solid drag force in horizontal dilute phase pneumatic conveying strongly depends on the accuracy of gas-solid velocity correlation. However, there are limited studies on the solid velocity in horizontal dilute phase pneumatic conveying and it is important to further validate suitability of existing correlation of gas-solid velocity, especially for fine particles (such as pulverized coal). Consequently, in this paper, a negative pressure pneumatic conveying test rig is set up and two kinds of powders with different sizes are adopted. Optical fiber probe (OFP) was used to measure the volumetric solid concentration and particle velocity. The volumetric solid concentration was also calculated by using the measured particle velocity. The results show that the solid concentrations obtained by the two methods have good agreement, and discrepancy is within ± 20%. It was found the particle velocities are different in the upper and lower part of the cross-section in the horizontal pipe. However, the difference is generally no more than 2 m/s. The velocity difference will decrease with the increasing gas velocity, and increases with the solid mass flow rate. In the experimental condition of 0.06 mm < ds < 0.35 mm, 1400 kg/m3 < ρs < 2600 kg/m3, the implicit correlation based on Yang's Unified Theory gives the best prediction of particle velocity among existing studies but still with noticeable discrepancy with the comparison of the present experimental data. By modifying the solid friction factor, an improved correlation of the particle velocity was obtained, which agrees better with the experimental data given in the present and literature studies.  相似文献   

13.
Pristine and vanadium-doped In2O3 nanofibers were fabricated by electrospinning and their sensing properties to H2S gas were studied. X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the inner structure and the surface morphology. The H2S-sensing performances were characterized at different temperatures ranging from 50 to 170 °C. The sensor based on 6 mol% V-doped In2O3 nanofibers exhibit the highest response, i.e. 13.9–50 ppm H2S at the relatively low temperature of 90 °C. In addition, the fast response (15 s) and recovery (18 s) time, and good selectivity were observed.  相似文献   

14.
A method was developed for selection of promising solvents based on CO2 absorption experiments at 40 °C and 9.5 kPa CO2 partial pressure followed by desorption of the same solvents at 80 °C down to 1.0 kPa CO2 partial pressure. Experiments conducted on 13 solvent systems under atmospheric conditions revealed the solvents absorption and desorption characteristics and these were compared with 1.0 M, 2.5 M, 5.0 M and 10.0 M MEA. Results showed that absorption or stripping data alone were not sufficient in making robust solvent selection decisions, and that combined data analysis was necessary. 1.0 M tetraethylenepentamine (TEPA) and 5.0 M MEA showed the best performance in terms of absorption rate. 1.5 M Bis-(3-dimethylaminopropyl) amine (TMBPA) was easy to desorb, has high absorption capacity; and when promoted it showed the best performance in terms of CO2 carrying capacity. At the test conditions, 1.5 M TMBPA promoted with 1.0 M PZ showed the best potential for efficient CO2 removal at reduced cost of all systems tested. Its cyclic capacity in mol CO2/mol amine was found to be 70% higher than that of 5 M MEA.  相似文献   

15.
Zhan Lin 《Electrochimica acta》2009,54(27):7042-9377
Pt/carbon composite nanofibers were prepared by electrodepositing Pt nanoparticles directly onto electrospun carbon nanofibers. The morphology and size of Pt nanoparticles were controlled by the electrodeposition time. The resulting Pt/carbon composite nanofibers were characterized by running cyclic voltammograms in 0.20 M H2SO4 and 5.0 mM K4[Fe(CN)6] + 0.10 M KCl solutions. The electrocatalytic activities of Pt/carbon composite nanofibers were measured by the oxidation of methanol. Results show that Pt/carbon composite nanofibers possess the properties of high active surface area and fast electron transfer rate, which lead to a good performance towards the electrocatalytic oxidation of methanol. It is also found that the Pt/carbon nanofiber electrode with a Pt loading of 0.170 mg cm−2 has the highest activity.  相似文献   

16.
In this study, a hierarchal web of carbon micro and nanofibers was used as a precursor for the synthesis of a carbon molecular sieve (CMS). CMSs were prepared by thermal treatment of carbon fibers using a microwave heating device. The heating power and treatment time were optimized for the maximum performance of the prepared CMS for the separation of CO2 at low concentrations from the gaseous mixture of CO2 and air under dynamic (flow) conditions. Based on the experimental data, microwave power input of 240 W and treatment time of 15 min were found to be suitable for the maximum uptake of CO2 by CMS. Adsorption breakthrough curves were obtained at different gas flow rates and CO2 concentrations. CMSs prepared from the hierarchal web of carbon micro and nanofibers were found to be superior to those prepared from ACF. The CO2 uptake was determined to be approximately 0.88 mg/g and 10 mg/g at concentrations of 500 ppm and 5000 ppm, respectively, in air.  相似文献   

17.
The determination of burning velocity is very important for the calculations used in hazardous waste explosion protection and fuel tank venting, which has a direct impact on environmental protection. The scope of the present study encompass an extensive study to map the variations of the laminar burning velocity and the explosion index of LPG-air and propane-air mixtures over wide ranges of equivalence ratio (Φ = 0.7-2.2) and initial temperature (Ti = 295-400 K) and pressure (Pi = 50-400 kPa). For this purpose a cylindrical combustion bomb was developed. The reliability and accuracy of the built up facility together with the calculation algorithm are confirmed by comparing the values of the laminar burning velocity obtained for a standard fuel (propane at normal pressure normal temperature conditions, NPT) with those available in the literature. The burning velocity was determined using different models depending on the pressure history (P-t) of the central ignition combustion process at the minimum ignition energy.The data obtained for the laminar burning velocity is correlated to SL = SL0(T/T0)α(P/P0)β where SL0 is the burning velocity at NPT, α and β are the temperature and pressure exponents respectively. The value of β is observed to slightly vary with the equivalence ratio for both fuels. However, propane exhibits higher pressure dependency than that of LPG. The maximum laminar burning velocity found for propane is nearly 455 mm/s at Φ = 1.1, while that for LPG is nearly 432 mm/s at 4.5% fuel percent (Φ ≈ 1.5). The maximum explosion index, commonly called the “explosion severity parameter”, is calculated from the determined laminar burning velocity and is found to be 93 bar m/s for propane, and nearly 88 bar m/s for LPG.  相似文献   

18.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux.  相似文献   

19.
Alumina nanofibers were successfully synthesized in mercury media at room temperature. Structure and morphology of the nanofibers were characterized by TEM, EDX, FESEM, XRD, TG, DTA and N2 adsorption–desorption. The results show that the as-grown alumina nanofibers are amorphous, and have diameters of 5–15 nm and lengths up to several micrometers. After calcinated at 850 °C for 2 h, the amorphous alumina nanofibers convert to γ-Al2O3 nanofibers. The mechanism for the growth of alumina nanofibers was discussed and a model representing the growth process was presented. During the process, mercury will be produced by metathesis reaction of HgCl2 and Al, Al atoms continuously dissolve into mercury and diffuse to amalgam/air interface, and then Al atoms react with oxygen and water in air, finally alumina nanofibers can be formed.  相似文献   

20.
Orifice meters are commonly used in many industrial facilities and pipelines. However, they increase the annual energy consumption and cost due to their high pressure loss. The present research introduces a new design that reduces this high pressure loss by inserting a ring downstream the standard orifice meter. Maximum reduction of pressure loss is achieved by optimizing the downstream ring geometry. Numerical optimization is implemented using CFD simulation together with a genetic algorithm. Accurate CFD simulation is performed to solve the flow field at different downstream ring geometries while the genetic algorithm is used to estimate the optimum ring geometry. Optimization results show 29.8–33.5% reduction of orifice meter pressure loss for a Reynolds number Re = 1.84 × 104 to 8.69 × 104. An increase of the discharge coefficient by 17.7–22% is also obtained within the investigated operating range. Both the effect of upstream distance and inlet flow disturbance and distortion are investigated. This investigation shows that the downstream ring reduces the pressure loss of standard orifice meters by 31–33.2% even under high flow disturbance and short upstream length. The proposed design adds many new advantages to the well known standard orifice meters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号