首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinyl alcohol) (PVA) is a water-soluble polymer that has been studied intensively because of several interesting physical properties that are useful in technical applications, including biochemical and medical applications. In this article, we report the effects of the addition of gelatin on the optical, microstructural, thermal, and electrical properties of PVA. Pure and PVA/gelatin blend films were prepared with the solution-casting method. These films were further investigated with Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, and dielectric measurements. The FTIR spectrum shows a strong chemical interaction between PVA and gelatin molecules with the formation of new peaks. These peaks are due to the presence of gelatin in the blend films. The DSC results indicate that the addition of gelatin to PVA changes the thermal behavior, such as the melting temperature of PVA, and this shows that the blends are compatible with each other. This also shows that the interaction of gelatin and PVA molecules changes the crystallite parameters and the degree of crystallinity, and this supports the XRD results. The UV–vis optical study also reflects the formation of the complex and its effect on the microstructure of the blend film. Moreover, the addition of gelatin also gives rise to changes in the electrical properties of PVA/gelatin blend films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Hydrogenated and maleated S-B-S block copolymer (SEBS-g-MA) was applied as a compatibilizer in melt-mixed binary blends with poly(ethylene-co-vinyl alcohol) (EVOH) and in ternaries containing high-density polyethylene (HDPE) as the major component. The techniques applied were dynamic, mechanical, and tensile testing; differential thermal analysis; Fourier transform infrared spectroscopy; and optical and electron microscopy (SEM). Small and large deformation behavior under dynamic and static mode, coupled with other physical characterization data, as well as morphological evidence, demonstrated that SEBS-g-MA is an efficient compatibilizer in the binary and ternary blends. In the latter, its function is the coupling of EVOH with the HDPE matrix, thus reducing the moisture sensitivity of the former and the improvement of performance-to-cost ratio of the final product. After leaching out EVOH from the ternaries, morphology examination of the cross section of films, showed a laminar EVOH phase distribution, a feature desirable in barrier materials applications. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 589–596, 1998  相似文献   

3.
Polyketone (PK) has excellent chemical and mechanical properties, but its use in food packaging is limited due to its oxygen barrier properties being insufficient for high-barrier film applications. To improve its oxygen barrier properties, PK has been blended with ethylene vinyl alcohol copolymer (EVOH), which is one of the highest oxygen barrier polymers in use today. The oxygen barrier properties under both dry and humid conditions, as well as the mechanical properties of PK/EVOH blend films were investigated in this study. These novel PK/EVOH blend films exhibited unusually low oxygen permeability values from 0.3 to 0.16 cc 20 μm m−2 day−1 atm−1 with increasing EVOH content from 30 to 70 wt%, which are even lower than those of the ideal laminar model that expresses the theoretical minimum permeability values attainable for blended barrier films. These high oxygen barrier properties of PK/EVOH blend films can conceivably be attributed to the combination of two dominant effects: a tortuous diffusion path through the EVOH domains in the PK matrix and hydrogen bonding interactions between PK and EVOH. Furthermore, in high-humidity environments with retorting, the PK/EVOH blend films exhibited superior resistance to moisture over EVOH. Immediately after the retorting test, the oxygen permeability of the high-barrier PK/EVOH blend films with an EVOH content of 30–40 wt% increased by less than 3× the pre-retorting value, as opposed to 74× for EVOH. In addition, PK/EVOH blend films displayed superior stretching characteristics, with a breaking strain of over 300%, which are valuable for flexible packaging applications.  相似文献   

4.
Blends of native corn starch and poly(ethylene-co-vinyl alcohol) (EVOH), with starch: EVOH ratios of 1 : 1 (SE-50) and 2 : 1 (SE-67A, SE-67B), were processed into blown films. SE-67A had a higher glycerol and water content and was processed at 5°C higher than was SE-67B. The films were conditioned to various moisture contents by equilibrating at a constant relative humidity and by oven drying at 41°C. Equilibrium moisture content, which ranged from 2 to 11%, increased with increasing starch content at a given relative humidity. Mechanical properties depended strongly on starch and moisture content as well as on processing history. The extension to break of SE-50 was only about one-third that of EVOH, while that of the 2 : 1 blends was even lower. SE-67A exhibited a higher extension to break, lower tensile strength and modulus, and greater moisture sensitivity than those of SE-67B. Differential scanning calorimetry and dynamic mechanical analysis revealed evidence of interactions between starch and EVOH, probably indicative of extensive intermixing but not necessarily miscibility. Scanning electron micrographs of fracture surfaces revealed extensive differences in texture with microcracking in SE-50 and SE-67A. The combination of the analytical results provide a basis for explaining many aspects of the mechanical behavior including the marked difference in properties between SE-67A and SE-67B. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2613–2622, 1997  相似文献   

5.
The effect of ethylene content and of the concentration of the solution used for electrospinning on the morphology of electrospun poly ethylene vinyl alcohol (EVOH) fibre was studied. Also, poly(lactic acid) (PLA) filled with electrospun EVOH fibres was investigated. Good interfacial adhesion between PLA and EVOH fibres was obtained with smaller diameter fibres. The effect of electrospun fibres resulted in disrupted lamellar morphology and also decreased the degree of crystallinity related to the semicrystalline framework. Surface roughness was calculated using atomic force microscopy (AFM). Surface roughness increased with the increase in fibre diameters. The rheology experiments revealed that electrospun EVOH fibres enhance the storage modulus of PLA composites while having low crystallinity. EVOH fibres showed the capacity of tuning the degradation behaviour. The good interfacial morphology between PLA and smaller diameter fibres slowed down the degradation rate, whereas composites with larger diameter fibres, due to poor interfacial adhesion showed faster degradation rate than the other compositions, because large EVOH fibres afford channels by which NaOH solution can easily penetrate throughout the composite material. The incorporation of EVOH fibres into PLA matrix allowed obtaining materials with increased storage modulus and also showed viability to tune the degradation behaviour of PLA based products.  相似文献   

6.
The thermal and mechanical properties and the morphologies of blends of poly(propylene) (PP) and an ethylene–(vinyl alcohol) copolymer (EVOH) and of blends of PP/EVOH/ethylene–(methacrylic acid)–Zn2+ ionomer were studied to establish the influence of the ionomer addition on the compatibilization of PP/EVOH blends and on their properties. The oxygen transmission rate (O2TR) values of the blends were measured as well. PP and EVOH are initially incompatible as was determined by tensile tests and scanning electronic microscopy. Addition of the ionomer Zn2+ led to good compatibility and mechanical behaviour was improved in all blends. The mechanical properties on extruded films were studied for 90/10 and 80/20 w/w PP/EVOH blends compatibilized with 10 % of ionomer Zn2+. These experiments have shown that the tensile properties are better than in the injection‐moulded samples. The stretching during the extrusion improved the compatibility of the blends, diminishing the size of EVOH domains and enhancing their distribution in the PP matrix. As was to be expected, the EVOH improved the oxygen permeation of the films, even in compatibilized blends. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Polymer nanocomposites based on poly(vinyl alcohol) (PVA)/starch blend and graphene were prepared by solution mixing and casting. Glycerol was used as a plasticizer and added in the starch dispersion. The uniform dispersion of graphene in water was achieved by using an Ultrasonicator Probe. The composites were characterized by FTIR, tensile properties, X‐ray diffraction (XRD), thermal analysis, and FE‐SEM studies. FTIR studies indicated probable hydrogen bonding interaction between the oxygen containing groups on graphene surface and the –OH groups in PVA and starch. Mechanical properties results showed that the optimum loading of graphene was 0.5 wt % in the blend. XRD studies indicated uniform dispersion of graphene in PVA/starch matrix upto 0.5 wt % loadings and further increase caused agglomeration. Thermal studies showed that the thermal stability of PVA increased and the crystallinity decreased in the presence of starch and graphene. FE‐SEM studies showed that incorporation of graphene increased the ductility of the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41827.  相似文献   

8.
In the present study, ethylene/vinyl alcohol (EVAL) copolymers with different hydroxyl contents were melt mixed with styrene/maleic anhydride (SMA) copolymers. These two copolymers have functional groups capable of reacting intermolecularly, giving stable products. All EVAL copolymers were prepared from the same ethylene/vinyl acetate (EVA) copolymer by controlled hydrolysis. The blends, prepared at constant temperature and rotation speed in the rheomixer, were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermo-gravimetric analysis, as well as mechanical properties and extraction experiments. All the above measurements lead to the conclusion that a certain part of hydroxyls of EVAL have reacted with anhydride groups of SMA, leading to the formation of branched and cross-linked products. The effect of (1) the molar ratio of hydroxyl/maleic anhydride functional groups, (2) the overall concentration of the functional groups, and (3) the mixing time on the structure and properties of the blends are discussed. Emphasis is given on the influence of these factors on the tensile strength, the elongation at break, and impact strength of the products. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 983–999, 1997  相似文献   

9.
In polarized Fourier‐transformed infrared spectroscopy and polarized Raman spectra of drawn poly (ethylene naphthalate)/polypropylene (PP) blends, the intensities of the orientation‐sensitive bands of the blend components increased or decreased with increasing elongation, depending on the orientation of the corresponding vibrations. A significantly larger extent of molecular orientation was induced, when localized heating was applied to the blend during elongation (zone‐drawing). Greater degree of molecular orientation resulted in a higher strength blend. The strengths of the blends after each stage of microfibrillization, namely fibrillization and isotropization, were measured and correlated with spectral changes. After isotropization, the PP chains were randomized as shown by equal band intensities of the parallel and perpendicular spectra. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The cold crystallization behavior of poly (L ‐lactide) (PLLA) blend films modified by small amount of acrylic rubber particles (ACR) have been investigated by in situ Fourier‐transform infrared (FTIR) spectroscopy. During the isothermal cold crystallization, the crystallization rate of PLLA is greatly improved with addition of only 1 wt % ACR. However, for PLLA with 8 wt % ACR, the crystallization rate is slower than that of neat PLLA. The relative crystallinity of PLLA with the addition of 1–5 wt % ACR is obviously higher than that of the neat PLLA. For the PLLA blend film with 3 % ACR, the relative crystallinity reaches a maximum. It was found that the addition of ACR particles below 5% accelerated the cold crystallization nucleation process and made the cold‐crystallization rate of PLLA/ACR be quicker than that of neat PLLA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The instability in water of poly(vinyl alcohol) (PVA)/poly(carboxymethyl cellulose) (CMC) was improved through radiation-induced grafting with a styrene monomer. The PVA/CMC blend graft copolymer was used as a sorbent for dye wastes normally released from textile factories. The factors that may affect the sorption process such as time, temperature, weight of the blend graft copolymer, and volume of the dye waste were investigated. The sorption of dyestuffs by the blend graft copolymer was determined by a method based on spectroscopic analysis. The results showed that the blend graft copolymer has a high affinity for basic, acid, and reactive dyes. Meanwhile, it was observed that the sorption of dyes is more effective at the high temperature of 70oC. Moreover, it was found that the sorption of dyes depends on the weight of the blend graft copolymer and does not depend on the volume of the waste solution. The sorption of the dyestuffs by a PVA/CMC graft copolymer may be considered to be a practical method to remove organic pollutants. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 136–142, 2001  相似文献   

12.
Thermoplastic starch (TPS)/poly(vinyl alcohol) (PVA) blend films were modified by crosslinking through soaking the films in glutaraldehyde aqueous solution and then heating in an oven. The effects of the concentration of the glutaraldehyde aqueous solution, soaking time, reaction temperature, and time on the crosslinking reaction were investigated. The moisture absorption and mechanical properties of the films were measured to characterize the influence of the crosslinking modification. It was found that the crosslinking modification significantly reduced the moisture sensitivity of the TPS/PVA blend films and increased the tensile strength and Young's modulus but decreased the elongation at break of the TPS/PVA blend films. The described method could be used for posttreating TPS/PVA‐based products to optimize their properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
In this study, the novel morphology of polypropylene (PP) and poly(ethylene-co-vinyl alcohol) (EVOH) blend fibers is described. More precisely, the blend fibers of PP–EVOH containing a small amount of EVOH (1, 3, 5, 7, and 9% by weight), with and without epoxy (1 wt %), have been melt-spun at a constant spinning velocity (500 m/min). For the as-spun fiber, both the initial modulus and the tenacity increased with the increase in the EVOH content. The blend fibers with three draw ratios (2, 3, and 4) drawn at room temperature. The scanning electron microscopic study showed that a draw ratio of 2 reveals little about the morphological changes, whereas a draw ratio of 4 showed a streak structure perpendicular to the fiber axis for PP–EVOH (91/9 wt %) blend fibers. In addition, epoxy (1 wt %) containing PP–EVOH (91/9 wt %) blend fiber showed latitudinal streaks. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1049–1057, 1999  相似文献   

14.
Polycarbonates (PCs) are commonly used as a blend and a composite to achieve pecuniary advantages and dimensional stability. While the toughness of a homogeneous PC matrix has been extensively investigated, examination for the toughness of heterogeneous blend systems such as PC/polypropylene (PP) blends has been limited. Furthermore, recent interest in highly flowable PCs (low-molecular-weight PCs with low ductility) has surfaced due to the large and geometrically complex plastic parts. Herein, the toughness for PC/PP blends and PC/PP/talc composites in a ductile and a brittle PC matrix was explored by using various toughness measurements such as notched Izod impact strength, falling dart impact, boss quasi-static energy/impact energy, and tensile toughness tests. In a ductile PC matrix [melt flow index (MFI) = 8], the incorporation of PP gradually reduced the toughness. On the other hand, the toughness was improved by 450% at 2 wt % PP in a brittle PC matrix (MFI = 19). Similarly, in the talc-induced brittle PC matrix, the toughness was enhanced at the PP loading from 2 to 10 wt %. The density of PC/PP blends was gradually reduced from 1.19 to 1.10 g cm−3 with increasing PP concentration from 0 to 20 wt %. Degradation, density, thermal behaviors, and morphology were also investigated. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47110.  相似文献   

15.
Poly (vinyl chloride), PVC, and poly(vinylidene fluoride), PVDF, are incompatible polymers. Poly(neopentyl glycol adipate), PDPA, is miscible with both PVC and PVDF. With PDPA acting as a compatibilizer between PVC and PVDF. compatible PVC/PDPA/PVDF blends can be formed at PVDF content of about less than 50wt%. Above 50wt% PVDF the ternary blends exist in two phases exhibiting two glass transition temperatures, Tg, PVC is the main contributor to the mechanical strength while PDPA and PVDF contribute to the elastic properties of these blends. A compatible blend of 55/22.5/22.5 wt% PVC/PDPA/PVDF exhibiting one single Tg appears to show an interesting balance of the properties of the blend components.  相似文献   

16.
The properties of solutions for syndiotacticity-rich poly(vinyl alcohol) (s-PVA)/dimethylformamide (DMF)/water systems, the gelation of the s-PVA solutions, and the properties of the dried s-PVA gel films were examined. From the results of the dissolution temperature of the polymer, the gelation temperature of the solutions, the melting temperature of the gels, and the compressive modulus of the gels, the solubility of the polymer was the highest at DMF contents of 10–20 vol %. The maximum dynamic tensile modulus of the drawn (×18) films obtained from the dried gel films with a DMF content of 10 vol % was 54.9 GPa at 20°C. The orientation of the polymer chains in the amorphous regions was higher than that in the crystalline regions. The orientation of the polymer chains in the amorphous regions for the drawn films with a DMF content of 10 vol % was higher than that for the drawn films with a DMF content of 60 vol %. The orientation of the polymer chains in the amorphous regions was considered to play an important role in the properties of high strength and high modulus. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1661–1667, 1998  相似文献   

17.
The blends of high molecular weight poly(propylene carbonate) (PPC) and poly(butylene succinate) (PBS) were melt blended using triphenylmethane triisocyanate (TTI) as a reactive coupling agent. TTI also serves as a compatibilizer for the blends of PPC and PBS. The blend containing 0.36 wt % TTI showed that the optimal mechanical properties were, therefore, calendared into films with different degrees of orientation. The calendering condition, degree of orientation, morphologies, mechanical properties, crystallization, and thermal behaviors of the films were investigated using wide‐angle X‐ray diffraction, scanning electron microscopy, tensile testing, and differential scanning calorimetry (DSC) techniques. The result showed that the as‐made films exhibited obvious orientation in machine direction (MD). Both tensile strength in MD and the tear strength in transverse direction (TD) increased with increasing the degree of orientation. The orientation of the film also increased the crystallinity and improved the thermal properties of the PPC/PBS blend films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
In this study, we prepared and characterized membranes containing polypropylene, poly(ethylene‐co‐vinyl acetate) (EVA), and poly(vinyl alcohol) (PVA). The production process involved blend extrusion and calendering followed by solvent extraction by toluene and water of the EVA and PVA phases. Morphology studies involving scanning electron microscopy determined the pore size distribution at the surface and in the internal regions of the membrane. The resulting membrane properties were related to the processing variables (extension rate, process temperature, and solvent extraction methods) and blend composition. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3275–3286, 2004  相似文献   

19.
The blend miscibility of poly(vinyl alcohol) and poly(methyl methacrylate) in N,N′‐dimethylformamide solution was investigated by viscosity, density, ultrasonic velocity, refractive index, and UV and fluorescence spectra studies. Differential scanning calorimetry and scanning electron microscopy were used to confirm the blend miscibility in the solid state. Blends were compatible when the concentration of poly(vinyl alcohol) was greater than 60 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2415–2421, 2006  相似文献   

20.
Various azoderivative dyes were incorporated in uncolored poly(vinyl alcohol) (PVOH). One type of film was obtained by drying the layer of solution cast on glass plate. The other type was obtained by rubbing the PVOH layer before complete drying. Linear birefringence and dichroism of dyed polymer films were investigated as a function of stretching degree. An increase in the linear birefringence was found with increasing stretching degree for both uncolored and colored films. Dichroism of the PVOH films depends on the dye chemical structure and also on the stretching degree of both non-rubbed and rubbed and dyed PVOH samples. Molecular modeling was used to examine interactions occurring between PVOH and the embedded dye molecule. These stretching degree dependencies were approximated mathematically, which was used to describe the behavior of some components of interference filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号