首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural characterization of poly(n-methylen-di-O-methyl-l-tartaramide)s with n=3, 5, 7 and 9 has been carried out using optical microscopy, thermal analysis, X-ray diffraction and electron microscopy. X-ray diffraction of powder and fiber samples were analyzed together with electron diffraction patterns of single crystals obtained from isothermal crystallization in solution. Experimental results based on crystallographic data were used to build a crystal model using the Cerius program. This model is based in chain packing with an arrangement of hydrogen-bonded sheets, being the resultant crystal structure similar to the exhibited in conventional polyamides.  相似文献   

2.
The solid-state structures of polystyrene-poly(Z-l-lysine) block copolymers were examined with respect to the polymer architecture and the secondary structure of the polypeptide using circular dichroism, quantitative small- and wide-angle X-ray scattering, and electron microscopy. Linear block copolymers exhibit a hexagonal-in-lamellar structure where folded and packed polypeptide α-helices form lamellae which extend over an exceptional broad range of the composition diagram. Star- or bottlebrush-shaped copolymers are able to stabilize a larger interface area than linear ones which promotes the formation of undulated lamellar mesophases. Depending on the secondary structure of polypeptide segments, plane lamellar, superundulated lamellar, or corrugated lamellar phases are formed. These results indicate the importance of a secondary structure and packing of polymer chains for the formation of new phases and ordering far from the ‘classical’ phase behavior.  相似文献   

3.
This paper describes the synthesis, characterization, and self-assembly behavior of amphiphilic polyethylene-block-poly(l-glutamate) (PE-b-PGA) diblock copolymers. PE-b-PGA diblock copolymers were obtained by ring-opening polymerization (ROP) of γ-benzyl-l-glutamate-N-carboxyanhydride (BLG-NCA) using PE–COOCH(iPr)NH2 as a macroinitiator and subsequent deprotection of the benzylester groups. The self-assembly behaviors of the PE-b-PGA copolymers in water were studied as a function of pH and ionic strength by means of fluorescence spectroscopy, laser light scattering, UV-circular dichroism, and transmission electron microscopy. The size of the polymeric micelles decreases with a decreasing pH value even at high salt concentrations because the solvating PGA units can perform a coil-to-helix transition.  相似文献   

4.
Jian Dai  Chengyong Ha  Dongliang Chang 《Polymer》2007,48(19):5696-5701
The novel acetylene monomers, l-proline derivatives based propargylethers PR (PA, PC, and PL) were synthesized by alkylation of Boc-hydroxyproline with propargyl bromide and acylation of achiral amine. The homopolymers of the novel acetylene monomer exist in no regulated higher order structure in solvents because of the lack of hydrogen bond and the unique ring structure in the pendant. Consequently, the copolymerization of l-proline-derived chiral propargylether PR with the l-alanine-derived N-propargylamide (LA) was formed and the chiroptical properties of the formed copolymers were examined. We conclude that (1) N-H of the amide group at 2-position in proline play an important role in the formation of helical conformation of poly(LA88-co-PR12); (2) improving the amount of PC of poly(LA-co-PC) changes the conformation of the copolymer in CHCl3 and perturbs the leadership of LA; (3) the conformation of poly(LA75-co-PC25) remarkably changes with changing temperature and PC obtains the leadership in the competition on the conformation of poly(LA75-co-PC25) in CHCl3 with the improvement of temperature.  相似文献   

5.
Chang-Hong Ho  Yu-Der Lee 《Polymer》2010,51(7):1639-1647
This investigation characterizes the molten morphologies following isothermal crystallization of poly(l-lactide-block-dimethyl siloxane-block-l-lactide) triblock copolymers, which were synthesized by ring-opening polymerization of l-lactide using hydroxyl-telechelic PDMS as macroinitiators, via small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The break-out and preservation of the nanostructure of the triblock copolymer depended on the segregation strength, which was manipulated by varying the degree of polymerization. The crystallization kinetics of these semicrystalline copolymers and the effect of isothermal crystallization on their melting behaviors were also studied using DSC, FT-IR and WAXS. The exclusive presence of α-phase PLLA crystallite was verified by identifying the absence of the WAXS diffraction signal at 2θ = 24.5° and the presence of IR absorption at 1749 cm−1 when the PLLA segment of the block copolymers was present as a minor component. The dependence of the crystallization rate (Rc) on the chemical composition of the triblock copolymers reveals that the Rc of the triblock copolymers was lower than that of PLLA homopolymer and the Rc were substantially reduced when the minor component of the crystallizable PLLA domains was dispersed in the PDMS matrix.  相似文献   

6.
Yanan Yang  Jing Cai  Xiuli Zhuang  Xiabin Jing 《Polymer》2010,51(12):2676-2549
A novel biodegradable AB-type diblock copolymer poly(L-lactic- co-glycolic acid)-block-poly(l-glutamic acid) (PLGA-b-PGA) was synthesized by a macromolecular coupling reaction between carboxyl-terminated PLGA and amino-terminated poly(γ-benzyl-glutamate) (PBLG) and the subsequent elimination of the protecting benzyl group. The structures of PLGA-PGA and its precursors were confirmed by Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC). This synthetic strategy simplified a former synthesis process of polypeptide-poly(l-lactic acid)(PLA); by using this new synthetic route the molecular weight and block ratio of PLGA-PGA could be easily controlled by adjusting the chain length of PLGA/PGA. The pH sensitivity and self-assembly behavior of PLGA-PGA copolymer were investigated by environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results showed that the copolymer exhibited high pH responses, and the morphologies of the copolymer aggregates underwent four stages orderly with the pH increase (pH = 3-9): a disorganized form, micelles, semi-vesicles with thick walls and vesicles. Such a pH-dependent self-assembly process of the copolymer is promising for drug control release and bio-applications.  相似文献   

7.
The molecular diffusion coefficients of l-menthone and l-carvone in supercritical carbon dioxide (SCCO2) and carbon dioxide containing 5 and 10 mol% ethanol as a modifier were measured by the Taylor-Aris chromatographic peak broadening (CPB) method over the ranges of temperature from 308.15 to 338.15 K and pressure from 15 to 30 MPa. It was found that the correlation relationships between diffusion coefficients and the temperature, pressure, viscosity, and density, such as the linear correlation between the D12 and ρ, and between the D12 and T/η, which were valid in binary systems, were also suitable for ternary systems of carbon dioxide containing modifier. The diffusion coefficients in modified SCCO2 decreased with increasing the ethanol mole fraction due to the chemical association between the two solutes and ethanol. Of several models used to predict experimental data in pure carbon dioxide, the two models of Funazukuri-Ishiwata-Wakao and He-Yu-1998 were the best with the AAD less than 3.2%. Furthermore, the models of modified Wilke-Chang, Scheibel, Reddy-Doraiswamy, Lusis-Ratcliff, Hayduck-Minhas, Tyn-Calus, and Lai-Tan overestimated the diffusion coefficient in ethanol modified SCCO2 with the AAD values increaseing with the percentage of ethanol, which were probably due to the increase of the volume of solvaton sphere as a true diffusion unit with the percentage of ethanol. Moreover, the free volume model of Dymond is good for predicting the experimental data in pure carbon dioxide and ethanol modified SCCO2 with the AAD values range from 3.21 to 1.90%.  相似文献   

8.
J Blomqvist  B Mannfors  L.-O Pietilä 《Polymer》2002,43(17):4571-4583
In this paper static amorphous state properties (solubility parameter, free volume (using the Voorintholt method and the Voronoi tessellations) and pair correlation functions, the last ones also by including water molecules in the cells), which can be related to the probability for water uptake, have been studied for polyglycolic (PGA), poly(l-lactic) (PLLA), poly(l,d-lactic) (PLLA/PDLA) and poly(glycolic/l-lactic) (PGA/PLLA) acids, known to be biodegradable polymers. The polymer consistent force field, as modified by the authors, has been used in the calculations. The main purpose of this paper is to investigate, which of the amorphous state properties would be relevant for water uptake. We also discuss the validity of th6e methods used for these kinds of studies, and the related reliability of the computed results. Chain flexibilities of the studied polyesters in the amorphous phase have been analyzed, and the intermolecular interactions are found to cause the most significant variations in the distributions of the adjacent chain dihedral angle pairs and in the related populations of the low-energy regions of the comonomers. The solubility parameters, as calculated from the cohesion energy densities of the constructed models, suggest PGA being most compatible with water, in agreement with experiments. On the other hand, the quantitative structure-property relationships method ‘Synthia’ suggests a very similar solubility in water for all particular polyesters. In the PLAs and PGA/PLLA, however, a larger number of hydrogen bonds is formed between the water molecules and the carbonyl oxygen atoms of the chains showing a better possibility of PLLA and its copolymers to break into shorter chains. As an explanation, the hydrophobic methyl groups of the lactide units are suggested to push the water molecules closer to the carbonyl groups than in homo-PGA.  相似文献   

9.
To achieve the feed stock recycling of poly(l-lactide) (PLLA) to l,l-lactide, PLLA composites including alkali earth metal oxides, such as calcium oxide (CaO) and magnesium oxide (MgO), were prepared and the effect of such metal oxides on the thermal degradation was investigated from the viewpoint of selective l,l-lactide formation. Metal oxides both lowered the degradation temperature range of PLLA and completely suppressed the production of oligomers other than lactides. CaO markedly lowered the degradation temperature, but caused some racemization of lactide, especially in a temperature range lower than 250 °C. Interestingly, with MgO racemization was avoided even in the lower temperature range. It is considered that the effect of MgO on the racemization is due to the lower basicity of Mg compared to Ca. At temperatures lower than 270 °C, the pyrolysis of PLLA/MgO (5 wt%) composite occurred smoothly causing unzipping depolymerization, resulting in selective l,l-lactide production. A degradation mechanism was discussed based on the results of kinetic analysis. A practical approach for the selective production of l,l-lactide from PLLA is proposed by using the PLLA/MgO composite.  相似文献   

10.
Zhilian Yue 《Polymer》2005,46(8):2497-2505
The effect of PEGylation on the aqueous solution properties of a pH responsive pseudopeptide, poly(l-lysine iso-phthalamide), has been investigated using UV and fluorescence spectroscopy, 1H NMR spectroscopy and dynamic light scattering. It was demonstrated that the level of PEGylation had a critical effect on the pH response of the parent polymer. When the degree of PEGylation was less than 23.4 wt% the modified polymer exhibited a transition from an expanded structure at high degrees of ionization to a compact hydrophobically stabilised structure at low degrees of ionization. The specific pH at which the conformational transition occurred was dependent on the degree of PEGylation. At levels of PEGylation in excess of 25.6 wt% the polymer no longer displayed this pH dependent conformation and existed in a micellar form (100-200 nm) over the whole range of ionization. Both linear and micellar forms of the pseudopeptide have applications in drug delivery.  相似文献   

11.
A series of new titanium isopropoxide complexes (1-4-Ti(OiPr)2 based on enantiopure (1-H2), racemic (2-H2), meso (3-H2) and diastereomeric (4-H2) aminodiol ligands have been prepared and tested as initiators for the ring opening polymerization (ROP) of l/rac-lactide in solution and in bulk conditions. All complexes were shown to have significant activity in solution at 70 °C and higher activity in bulk at 130 °C with a good control over the molar mass distribution and molecular weights. The complex derived from the racemic-aminodiol ligand gave partially heterotactic polylactide in ROP of rac-lactide and afforded atactic polylactide in the bulk, whereas all other complexes yielded atactic polylactides both in solution and in bulk. Ligand variation (chirality) in the complexes has little effect on either the activity or selectivity of the initiators. The polymerization kinetics using (1-Ti(OiPr)2) as an initiator indicated a first order reaction with respect to the monomer concentration.  相似文献   

12.
The spherulite growth behavior and mechanism of l-lactide copolymers, poly(l-lactide-co-d-lactide) [P(LLA-DLA)], poly(l-lactide-co-glycolide) [P(LLA-GA)], and poly(l-lactide-co-ε-caprolactone) [P(LLA-CL)] have been studied using polarization optical microscopy in comparison with poly(l-lactide) (PLLA) having different molecular weights to elucidate the effects of incorporated comonomer units. The incorporation of comonomer units reduced the radius growth rate of spherulites (G) and increased the induction period of spherulite formation (ti), irrespective of the kind of comonomer unit. Such effects became remarkable with the content of comonomers. At a crystallization temperature (Tc) of 130 °C, the disturbance effects of comonomers on the spherulite growth decreased in the following order: d-lactide>glycolide>ε-caprolactone, when compared at the same comonomer unit or reciprocal of averaged l-lactyl unit sequence length (ll). The ti estimation indicated that the glycolide units have the lowest disturbance effects on the formation of spherulite (crystallite) nuclei. The PLLA having the number-average molecular weight (Mn) exceeding 3.1×104 g mol−1 showed the transition from regime II to regime III at Tc=120 °C, whereas PLLA with the lowest Mn of 9.2×103 g mol−1 crystallized solely in regime III kinetics and the copolymers excluding P(LLA-DLA) with 3% of d-lactide units crystallized solely according to regime II kinetics. The nucleation and front constant for regime II and III [Kg(II), Kg(III), G0(II), and G0(III), respectively] estimated with each (not with a fixed for high-molecular-weight PLLA) decreased with increasing the amount of defects per unit mass of the polymer for crystallization, i.e. with increasing the comonomer content and the density of terminal group through decreasing the molecular weight.  相似文献   

13.
Cationic polymers polyethylenimine (PEI) and poly-l-lysine (PLL) used as non-viral gene/drug delivery vehicles, showed high cytotoxicity but their molecular mechanisms of toxicity have been inadequately understood. Therefore, we tried to investigate the toxicity pathway triggered by these polymers through a high-content cellular imaging technique. The results revealed that PEI induced apoptosis via an intrinsic pathway, whereas PLL showed cytotoxicity through both intrinsic and extrinsic caspase cascade. Both PEI and PLL provide different apoptotic activities on HepG2 cells depending on their molecular weight. The degree of apoptosis of PEI also depends on its structure. The branched PEI showed higher cytotoxicity than linear PEI. This observation was verified through Annexin V-FITC/PI assay and real-time high-content monitoring of cytosolic calcium, mitochondrial membrane disruption, and caspase-3 activation methods. The study therefore provides important implications on the molecular mechanisms of PEI and PLL induced cytotoxicity.  相似文献   

14.
Poly(γ-benzyl l-glutamate)-block-poly(l-phenylalanine) was prepared via the ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride and l-phenylalanine N-carboxyanhydride using n-butylamine·HCl as an initiator for the living polymerization. Polymerization was confirmed by 1H-nuclear magnetic resonance spectroscopy and matrix assisted laser desorption ionization time of flight mass spectroscopy. After deprotection, the vesicular nanostructure of poly(l-glutamic acid)-block-poly(l-phenylalanine) particles was examined by transmission electron microscopy and dynamic light scattering. The pH-dependent properties of the nanoparticles were evaluated by means of ζ-potential and transmittance measurements. The results showed that the block copolypeptide could be prepared using simple techniques. Moreover, the easily prepared PGA-PPA block copolypeptide showed pH-dependent properties due to changes in the PGA ionization state as a function of pH; this characteristic could potentially be exploited for drug delivery applications.  相似文献   

15.
The aim of this paper is to present a new method of copolymerization of glycolide with l-lactide with the use of low toxic iron compounds. The use of Fe(acac)3 and Fe(OEt)3 initiators enabled one to obtain copolymers with yields up to 100% and possessing good mechanical properties. The chain propagation process and the influence of the transesterification was examined.On the basis of NMR examination and DSC thermograms, it was shown that the samples obtained at the temperature of 100 °C with the use of the initiators have quasi-segmental chain microstructure.  相似文献   

16.
The non-isothermally and isothermally crystallized stereodiblock copolymers of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) with equimolar l-lactyl and d-lactyl units and different number-average molecular weights (Mn) of 3.9 × 103, 9.3 × 103, and 1.1 × 104 g mol−1, which are abbreviated as PLLA-b-PDLA copolymers, contained only stereocomplex crystallites as crystalline species, causing higher melting temperatures of the PLLA-b-PDLA copolymers compared to those of PLLA homopolymers. In the case of non-isothermal crystallization, the cold crystallization temperatures of the PLLA-b-PDLA copolymers during heating and cooling were respectively lower and higher than those of PLLA homopolymers, indicating accelerated crystallization of PLLA-b-PDLA copolymers. In the case of isothermal crystallization, in the crystallizable temperature range, the crystallinity (Xc) values of the PLLA-b-PDLA copolymers were lower than those of the PLLA homopolymers, and were susceptible to the effect of crystallization temperature in contrast to that of homopolymers. The radial growth rate of the spherulites (G) of the PLLA-b-PDLA copolymers was the highest at the middle Mn of 9.3 × 103 g mol−1. This trend is different from that of the PLLA homopolymers where the G values increased monotonically with a decrease in Mn, but seems to be caused by the upper critical Mn values of PLLA and PDLA chains as in the case of PLLA/PDLA blends (in other papers), above which homo-crystallites are formed in addition to stereocomplex crystallites. The disturbed crystallization of PLLA-b-PDLA copolymers compared to that of the PLLA/PDLA blend is attributable to the segmental connection between the PLLA and PDLA chains, which interrupted the free movement of those chains of the PLLA-b-PDLA copolymers during crystallization. The crystallite growth mechanism of the PLLA-b-PDLA copolymers was different from that of the PLLA/PDLA blend.  相似文献   

17.
We apply a new X-ray scattering approach to the study of melt-spun filaments of tri-block and random terpolymers prepared from lactide, caprolactone and glycolide. Both terpolymers contain random sequences, in both cases the overall fraction of lactide units is ∼0.7 and 13C and 1H NMR shows the lactide sequence length to be ∼9-10. A novel representation of the X-ray fibre pattern as series of spherical harmonic functions considerably facilitates the comparison of the scattering from the minority crystalline phase with hot drawn fibres prepared from the poly(l-lactide) homopolymer. Although the fibres exhibit rather disordered structures we show that the crystal structure is equivalent to that displayed by poly(l-lactide) for both the block and random terpolymers. There are variations in the development of a two-phase structure which reflect the differences in the chain architectures. There is evidence that the random terpolymer includes non-lactide units in to the crystal interfaces to achieve a well defined two-phase structure.  相似文献   

18.
Random and sequential copolypeptides containing l-glutamic acid and l-tyrosine, as well as poly(l-tyrosine) and poly(l-glutamic acid) were investigated by means of c.d. spectroscopy in trimethylphosphate as solvent. In random copolymers, variation of ellipticities at 202.5 and 230 nm versus tyrosyl content follows a smooth curve, without any sharp change. This led to the conclusion that poly(l-tyrosine) α-helix is right-handed. From c.d. studies on sequential copolymers we were able to recognize that the 230 nm contribution of tyrosyl side chains is closely related to the array in which tyrosyl residues are arranged in the chain. For instance, it was found that (n, n + 2) and (n, n + 3) pairings of tyrosyl side-chains in (Tyr-Glu)n and (Glu-Tyr-Glu)n respectively, were poorly effective, while the (n, n + 4) pairing in (Glu-Glu-Tyr-Glu)n is more. However, the strongest contribution at 230 nm was observed on the alternating-páirs copolymer (Glu-Tyr-Tyr-Glu)n. This result suggests a new conformational arrangement of tyrosyl side chains in sequential copolymers, as well as in poly(l-tyrosine) and other aromatic polypeptides, based on a regular pairing of the aromatic groups, arranged in two contiguous superhelices.  相似文献   

19.
Among the various inorganic nucleators examined, Talc and an aluminum complex of a phosphoric ester combined with hydrotalcite (NA) were found to be effective for the melt-crystallization of poly(l-lactide) (PLLA) and PLLA/poly(d-lactide) (PDLA) stereo mixture, respectively. NA (1.0 phr (per one hundred resin)) can exclusively nucleate the stereocomplex crystals, while Talc cannot suppress the homo crystallization of PLLA and PDLA in the stereo mixture. Double use of Talc and NA (in 1.0 phr each) is highly effective for enhancing the crystallization temperature of the stereo complex without forming the homo crystals. The stereocomplex crystals nucleated by NA show a significantly lower melting temperature (207 °C) than the single crystal of the stereocomplex (230 °C) in spite of recording a large heat of crystallization ΔHc (54 J/g). Photomicrographic study suggests that the spherulites with a symmetric morphology are formed in the stereo mixture added with NA while the spherulites do not grow in size in the mixture added with Talc. The exclusive growth of the stereocomplex crystals by the melt-crystallization process will open a processing window for the PLLA/PDLA.  相似文献   

20.
A series of monomers based on the methyl, ethyl, and isopropyl esters of Nα-(methacryloyl)-serine and -threonine were synthesized, and used in an AIBN-initiated radical polymerization reaction to yield polymers with an Mn ranging between 6.6 and 23.8 kDa. The newly synthesized polymers showed LCST behavior in aqueous solution that could be tailored by subtle variations of the hydrophobicity of the monomers to obtain a broad range of cloud points between 1.5 and >100°C. According to HPLC, the hydrolytic t1/2-values (pH 7.4 at 37°C) of the monomers were found to be 5, 12, and 40 days of the methyl, ethyl, and isopropyl esters, respectively, while the hydrolysis rate of poly[Nα-(methacryloyl)-Ser-OMe] and poly[Nα-(methacryloyl)-Thr-OMe] was found to be significantly lower compared to the corresponding monomers. In order to obtain thermoresponsive nanoparticles, Nα-(methacryloyl)-Thr-OEt was polymerized with (PEG monomethyl ether 5000)2-ABCPA as macroinitiator to yield an amphiphilic block co-polymer, poly[Nα-(methacryloyl)-Thr-OEt]-b-(PEG monomethyl ether 5000), which forms particles of 300 nm at a temperature higher than its cloud point of 24°C. Incubation at physiological conditions induced ester hydrolysis resulting in a destabilization of the particles making these particles suitable for drug delivery purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号