首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lingyu Li  Chaoying Ni  Benjamin Hsiao 《Polymer》2007,48(12):3452-3460
Multi-walled carbon nanotubes (MWNTs) were modified with poly(hexamethylene adipamide) (also known as Nylon 66) via a controlled polymer solution crystallization method. A “nanohybrid shish kebab” (NHSK) structure was found wherein the MWNT resembled the shish while Nylon 66 lamellar crystals formed the kebabs. These Nylon 66-functionalized MWNTs were used as precursors to prepare polymer/MWNT nanocomposites. Excellent dispersion was revealed by optical and electron microscopies. Nitric acid etching of the nanocomposites showed that MWNT formed a robust network in Nylon 66. Non-isothermal DSC results showed multiple melting peaks, which can be attributed to lamellar thickness changes upon heating. The crystallite sizes L100 and L010 of Nylon 66, determined by WAXD, decreased with increasing MWNT contents. Isothermal DSC results showed that crystallization kinetics increased first and then decreased with increasing MWNT contents in Nylon 66. This study showed that the effect of MWNTs on Nylon 66 crystallization is twofold: MWNTs provide heterogeneous nucleation sites for Nylon 66 crystallization while the tube network structure hinders large crystal growth.  相似文献   

2.
Crystallization of polymers on carbon nanotubes (CNTs) has resulted in a novel nano hybrid shish kebab (NHSK) structure, within which CNTs serve as the nucleation sites (shish) and polymer lamellar crystals form the kebabs. Previously reported NHSK structures were obtained by solution crystallization, bulk crystallization and physical vapor deposition methods. Herein we report a simple, rapid, yet effective approach to produce NHSK materials using solvent evaporation and thin film crystallization. Polyethylene (PE) was used as the model polymer. PE solution was drop cast on CNT-coated carbon films, and upon solvent evaporation, PE crystallized onto/near CNTs, following the template of the latter and NHSK structure was then formed. The final morphology was found to result from the competition between heterogeneous nucleation and homogeneous nucleation of PE. The formation of NHSK also strongly depends on the structure of CNTs as well as the molecular weight of PE. This work shows a facile method to form NHSK and to study CNT-induced crystallization under nonequilibrium conditions.  相似文献   

3.
4.
K. Jradi  S. Bistac  G. Reiter 《Polymer》2009,50(15):3724-10480
The ability to orient polymer chains by applying external forces opens up the possibility to obtain polymeric surfaces with ordered structures. Here, we employed a friction-transfer approach by moving a pin of isotactic polystyrene (i-PS) across a smooth silicon counterface at controlled velocity, pressure and temperature which led to the deposition of a molecularly thin layer of highly oriented i-PS chains. The observed morphology of the resulting film (ribbons oriented in the sliding direction) indicated that the transferred molecules were highly oriented. This was confirmed after isothermal crystallization which led to the formation of so-called “shish-kebab” crystals aligned in the sliding direction. Thus, after crystallization all polymers were preferentially oriented with their chain axis in the shearing direction. Our results strongly suggest that by extending the polymer chain conformations in the shearing direction we can introduce a significant reduction of the nucleation barrier. Accordingly, friction transfer allows to align not only the transferred polymer chains but also the subsequently forming crystalline domains within the transferred films.  相似文献   

5.
Carbon nanotube (CNT) agglomeration exists inevitably in all CNT-polymer composites. This paper quantified the effect of CNT agglomeration on the piezoresistivity of CNT-polymer composites. A new multiscale model of 3-dimensional deformable CNT percolating networks has been developed, where the CNT agglomerates were modeled as second phases embedded randomly in the polymer matrix. The newly developed model agrees quantitatively with experimental data. The study found that the CNT agglomeration is responsible for the reduced electrical conductivity and nonlinearity of piezoresistivity with respect to the zero strain. Its effect can be quantified by the newly developed model. Parametric analyses were conducted to show the effects of morphology and electrical properties of CNTs, the Poisson's ratio of CNT-polymer composites and the extent, internal density and size of CNT agglomeration on the electrical conductivity and piezoresistivity. The current work provides a useful analysis tool for designing smart sensing and multifunctional polymer composites.  相似文献   

6.
Jun Young Kim 《Polymer》2006,47(4):1379-1389
Multi-walled carbon nanotube (MWCNT) and poly(ethylene 2,6-naphthalate) (PEN) nanocomposites are prepared by a melt blending process. There are significant dependence of non-isothermal crystallization behavior and kinetics of PEN/MWCNT nanocomposites on the MWCNT content and cooling rate. The incorporation of MWCNT accelerates the mechanism of nucleation and crystal growth of PEN, and this effect is more pronounced at lower MWCNT content. Combined Avrami and Ozawa analysis is found to be effective in describing the non-isothermal crystallization of the PEN/MWCNT nanocomposites. The MWCNT in the PEN/MWCNT nanocomposites exhibits much higher nucleation activity than any nano-scaled reinforcement. When a vary small quantity of MWCNT was added, the activation energy for crystallization is lower, then gradually increased, and becomes higher than that of pure PEN above 1.0 wt% MWCNT content. The incorporation of MWCNT improves the storage modulus and loss modulus of PEN/MWCNT nanocomposites.  相似文献   

7.
Investigations on electric conductivity and dielectric permittivity have been performed during melt processing of polycarbonate (PC) and polyamide 6 (PA6) containing different amounts of multi-walled carbon nanotubes (MWNT). For the experiments a measurement slit die containing two electrodes in capacitor geometry was flanged to the outlet of a twin-screw extruder. AC conductivity and the related complex permittivity were measured in the frequency range from 21.5 to 106 Hz for different processing conditions (melt temperature and throughput) and after stopping the extruder. It was found that the conductivity dropped down to values typical for the matrix polymer when the extrusion started. After the extruder was stopped the conductivity shows an increase of up to eight orders of magnitude with time. This conductivity recovery in the rest time after mechanical deformation was found to be faster for increasing melt temperature or samples with higher CNT concentration. The increase of the conductivity in the quiescent melt is explained by reorganization of the conductive network-like filler structure, which was - at least partially - destroyed under mechanical deformation. The reformation kinetics of the conductive network after mechanical deformation is considered to be an agglomeration process, which can be approximated by a combination of cluster aggregation and percolation theory.  相似文献   

8.
This work aims to clarify the mechanism of nanoparticle-induced co-continuity in immiscible polymer blends. An industrially relevant system, carbon black (CB)-filled acrylonitrile-butadiene-styrene (ABS)/polyamide 6 (PA6) blends, is investigated via scanning electron microscopy, selective extraction tests, dynamic mechanical analysis, and electrical conductivity measurements. The CB particles are found to be preferentially localized in the PA6 phase, and with an increase in CB loading (ΦCB), the critical volume fraction of PA6 (ΦPA6) that is essential for building the co-continuous structure decreases. The product of ΦPA6 and ΦCB, n, remains constant for the given system, suggesting that there exists an intrinsic cooperative effect between the CB and the CB-localized polymer phase. A further decrease in ΦPA6 is achieved either by loading CB with a higher self-networking capability or by isothermal post-treatments for sufficient self-agglomeration of the CB clusters. It is demonstrated that, under the direction of CB self-networking, the CB-localized polymer domains tend to fuse together into co-continuous organization with little phase coarsening. Therefore, CB self-assembly not only plays a key role in extending phase co-continuity over a much larger composition range but also acts on stabilizing the co-continuous polymer domains during the melt processing.  相似文献   

9.
10.
Asif Rasheed  Satish Kumar 《Polymer》2006,47(13):4734-4741
Polymer nanocomposite films containing 5 wt% single-walled carbon nanotubes (SWNT) or 5 wt% multi-walled carbon nanotubes (MWNT) with random copolymers of styrene and vinyl phenol were processed from dimethyl formamide solutions. Vinyl phenol mole ratio in the copolymer was 0, 10, 20, 30, and 40%. FTIR analysis indicates that the composites containing the copolymer with 20% vinyl phenol exhibit the maximum intermolecular interactions (hydrogen bonding) between the hydroxyl group of the vinyl phenol and the carbon nanotube functional groups. Tensile properties and electrical conductivity also are the highest in the samples containing the copolymer with 20% vinyl phenol. Thus, these results show that the optimization of the extent of intermolecular interactions between a polymer chain and a carbon nanotube results in an optimal increase in macroscopic properties. Moreover, the extent of intermolecular hydrogen bonding can be improved by optimizing the accessibility of the functional groups to participate in the non-covalent interaction. In this system, this optimization is realized by control of the amount of vinyl phenol in the copolymer, i.e. the copolymer composition.  相似文献   

11.
C. Hertlein  G. Strobl 《Polymer》2006,47(20):7216-7221
The free induction decay in 1H NMR experiments carried out for crystallizing polymers can be directly decomposed in contributions from crystals, melt-like regions and amorphous regions with a reduced mobility. Here, the results of time-dependent experiments conducted with the aid of a cost-efficient low-field NMR instrument are presented, obtained for sPP, P?CL and P(EcO). Crystallization isotherms are compared with those obtained by X-ray scattering and dilatometry. There are some minor systematic deviations which can be explained and accounted for. For all systems, a large fraction of amorphous chain parts in regions with a reduced mobility is found.  相似文献   

12.
S. Pegel  T. Villmow  G. Heinrich 《Polymer》2009,50(9):2123-481
Dispersion, distribution, and alignment of carbon nanotubes (CNT) in polycarbonate (PC) composites are quantified by means of statistical analysis of transmission electron microscopy (TEM) images. The analysed images originate from samples with 0.875 and 2 wt% CNT, processed by compression and injection moulding, respectively. The composites exhibit different microstructures with different electrical properties, depending on the processing parameters. By means of stereological approaches for projections of three dimensional fibre systems the CNT contents within the TEM samples are estimated. The tendency of CNT clustering as well as characteristic distances between the CNT and CNT clusters are quantified by evaluation of morphological functions. Furthermore, a correlation function is introduced to obtain a quantitative measure of CNT clustering within the isotropic compression moulded samples. For the injection moulded samples the correlation function is used to derive local orientation factors. The results underline that clustering of CNT can enhance and alignment of tubes can reduce electrical conductivity.  相似文献   

13.
Wei-Min Hou  Zhi-Hua Gan  Chi-Ming Chan 《Polymer》2007,48(17):4926-4931
The crystallization morphology and the melting behavior of the phase-separating poly(?-caprolactone) (PCL) and poly(ethylene oxide) (PEO) blends were studied using atomic force microscopy. Two blends consisting of PCL and PEO with weight ratios of 10/90 and 90/10 were prepared to form the isolated spherical domains by the phase-separating process. The results show that the melting temperatures of the PCL and PEO lamellae in the confined domains increased as the lamellar length increased, and the melting behavior of the PCL and PEO lamellae in the matrix and confined domains was also studied.  相似文献   

14.
This paper reviews the mechanism of the conducting process of carbon nanotubes (CNTs)-reinforced polymer nanocomposites. Comparison of the two different mechanisms, the formation of the conducting network and the hopping of the electrons, are discussed. The paper also describes the critical factors that determine percolation thresholds or the conductivity of the nanocomposites. By summarizing the predecessors' research, some measures are put forward to improve the structure of the nanocomposites to get the samples that have the most extraordinary electrical conductivity with the lowest CNTs concentrations.  相似文献   

15.
Jun Young Kim  Sang Il Han 《Polymer》2008,49(15):3335-3345
Aromatic polyester nanocomposites based on poly(ethylene 2,6-naphthalate) (PEN) and carbon nanotube (CNT) were prepared by melt blending using a twin-screw extruder. Modification of CNT to introduce carboxylic acid groups on the surface was performed to enhance intermolecular interactions between CNT and the PEN matrix through hydrogen bonding formation. Morphological observations revealed that the modified CNT was uniformly dispersed in the PEN matrix and increased interfacial adhesion between the nanotubes and the PEN, as compared to the untreated CNT. Furthermore, a very small quantity of the modified CNT substantially improved thermal stability and tensile strength/modulus of the PEN nanocomposites. This study demonstrates that the thermal, mechanical, and rheological properties of the PEN nanocomposites are strongly dependent on the uniform dispersion of CNT and the interactions between CNT and PEN, which can be enhanced by slight chemical modification of CNT, providing a design guide of CNT-reinforced PEN nanocomposites with a great potential for industrial uses.  相似文献   

16.
Limeng Chen 《Polymer》2010,51(11):2368-23
Polymer nanocomposite foams, products from the foaming of polymer nanocomposites, have received increasing attention in both the scientific and industrial communities. Nanocomposite foams filled with carbon nanofibers or carbon nanotubes with high electrical conductivity, enhanced mechanical properties, and low density are potential effective electromagnetic interference (EMI) shielding materials. The EMI shielding efficiency depends on the electrical conductivity and bubble density, which in turn, depend on the properties of the filler. In the current study, multi walled carbon nanotubes (MWNT) with controlled aspect ratio were used to alter the bubble density in MWNT/poly(methyl methacrylate) (PMMA) nanocomposites. It was found that the nanocomposite foams filled with shorter MWNT had higher bubble density under the same foaming conditions and MWNT concentration. Both the ends and sidewalls of carbon nanotubes can act as heterogeneous bubble nucleation sites, but the ends are more effective compared to the sidewalls. Shorter nanotubes provide more ends at constant MWNT concentration compared to long nanotubes. As a result, the difference in the foam morphology, particularly the bubble density, is due to the difference in the number of effective bubble nucleation sites.  相似文献   

17.
Takashi Yamamoto 《Polymer》2004,45(4):1357-1364
Molecular pathways to polymer crystallization and the structures of crystal-melt interfaces are investigated by molecular dynamics simulation. We adopt a simplified molecular model for polymethylene-like chains; the chain is made of CH2-like beads connected by harmonic springs, and the lowest energy conformation is a linear stretched sequence of the beads with slight bending stiffness being imposed. Two molecular systems are considered, one is made of 640 chains of C100 and the other is made of 64 chains of C1000, both being placed between two parallel substrates that represent the growth surfaces of the lamellae growing toward each other. The initial melt kept at a sufficiently high temperature above the melting point is rapidly cooled down to various crystallization temperatures, and the molecular processes of crystallization that follow are investigated. In both systems, we clearly observe the growth of stacked chain-folded lamellae from the substrates. The growing lamellae have a definite tapered shape, and they show marked thickening growth along the chain axis as well as usual growth perpendicular to it. The overall crystallization rate is found to be very sensitive to the crystallization temperature, showing an apparent maximum around 320-330 K for C100. We find that the lamellae do not grow keeping pace with each other but grow in independent rates especially at higher temperatures. We also examine the structures of the lateral growth surfaces and find that the growth surfaces are locally flat and the Kossel mechanism of crystal growth seems to be operative. In addition, the fold surfaces are found to be covered with relatively short chain-folds; at least about 60-70% of the folds are connecting the nearest or the next nearest neighbor crystalline stems. No appreciable bond orientational order is found in the undercooled melt of C100 and C1000.  相似文献   

18.
Frequency dependent investigations of conductivity and dielectric permittivity have been performed on composites of polypropylene (PP) containing different amounts of 2, 3.5, and 5 wt% of multiwalled carbon nanotubes (MWNTs) in the melt and during crystallization. The experiments were performed in a measurement slit die containing two dielectric sensors in plate-plate geometry, which was flanged to the outlet of a single screw laboratory extruder. AC conductivity and the related complex permittivity were measured in the frequency range from 20 Hz to 106 Hz after stopping the extruder (recovery after shearing) and during cooling (non-isothermal crystallization). For a sample with a MWNT content of 2 wt% the AC conductivity shows a tremendous increase with time after shearing was stopped. This conductivity recovery is explained by the reorganization of the conducting network-like filler structure, which was partially destroyed by the shear. The reformation kinetics of filler clusters is assumed to be due to a cooperative aggregation. For conductive fillers in a thermoplastic matrix the kinetics of cooperative aggregation is coupled to the electrical percolation. The reorganization of the percolation network can be related to reformation of (i) the local contact regions between the nanotubes (separated by polymer chains) and (ii) to the reorientation of nanotubes oriented in the shear flow. The conductivity recovery is less pronounced for samples with MWNT concentrations well above the percolation threshold. During cooling of the melt to temperatures below crystallization a significant decrease in the conductivity and permittivity was detected. This is consistently expressed in the conductivity and permittivity spectra and can be explained by reduction of the amorphous phase (high ion mobility) on expense of the crystalline phase and/or by crystalline regions in the contact region between tubes.  相似文献   

19.
Ashok K. Das 《Polymer》2010,51(10):2244-30
Translocation of polymer chains under the application of an external force has been studied through coarse-grained Monte Carlo simulations. The chains are pulled through a nanotube of finite length and diameter and their translocation times measured. The average translocation time, τ follows a scaling relation involving the chain length, N and applied force, F as, τ ∼ Nν′F−μ, where ν′ and μ are two different exponents (ν′ = 0.674, and μ = 0.95 ± 0.05). The scaling law is closely similar to the nanopore translocation scaling law reported by Milchev et al. [Ann N Y Acad Sci 2009;1161:95]. Characteristic signatures of the chain escape time have been exhibited by the square of end-to-end distance R2, axial radius of gyration Rg−x and other constituent properties. The behavior of the linear polymers under the application of a pulling force has been exploited to gain insights into the ultrafiltration process of unentangled polymers in dilute solution. The generic pulling force-translocation time (F, τ) data obtained through simulation can be matched reasonably well with the hydrodynamic force-critical macroscopic flow time (fh, Qc−1) data and also with the hydrodynamic force-reduced critical microscopic flow time (fh, qc−1) data obtained in the ultrafiltration experiment on long linear polystyrene chains in cyclohexane, as recently reported by Ge et al. [Macromolecules 2009;42:4400] The simulation technique reported here may be extended to study biomolecular transports occurring in long protein channels, as studied experimentally through current-time or voltage-time traces.  相似文献   

20.
The crystallization of polyethylene terephthalate (PET) and its effect on the electrical behavior of nanocomposites of PET and carbon nanotubes (CNTs) was studied. A series of nanocomposites composed of polyethylene terephthalate/carbon nanotubes (PET/CNTs) containing 0, 1 and 2% wt/wt carbon nanotubes were prepared by melt extrusion. The morphology developed by the nanocomposites during non-isothermal crystallization at different cooling rates was evaluated using various experimental techniques. Thermal analysis showed an increase in the crystallization temperature of the nanocomposites, which was associated with the nucleation ability of the CNTs, and confined growth that resulted in a 3D-to-1D reduction in the crystallite geometry of the nanocomposites. X-ray diffraction indicated that the crystal structure of the nanocomposites was not affected by the presence of carbon nanotubes or the cooling rate. However, the crystallinity of PET and the nanocomposites increased as the cooling rate decreased. The electrical conductivity of the materials as a function of the cooling rate, at a constant CNT content, showed a marked (two orders of magnitude) increase in passing from the amorphous state to the crystalline state. The results of theoretical calculations indicated self-assembly between the surface of the nanotubes and the aromatic ring of PET; it was proposed that the stacking of aromatic rings on the surface of the nanotubes has an effect on the rearrangement of electric charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号