首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiaoyi Sun  Xiaohua Huang  Qi-Feng Zhou 《Polymer》2005,46(14):5251-5257
The synthesis of ABC triblock copolymer poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene (PEO-b-PMMA-b-PS) via atom transfer radical polymerization (ATRP) is reported. First, a PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of halo-terminated poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) diblock copolymers under ATRP conditions. Then PEO-b-PMMA-b-PS triblock copolymer was synthesized by ATRP of styrene using PEO-b-PMMA as a macroinitiator. The structures and molecular characteristics of the PEO-b-PMMA-b-PS triblock copolymers were studied by FT-IR, GPC and 1H NMR.  相似文献   

2.
Xinchang Pang 《Polymer》2008,49(4):893-900
A series of amphiphilic macrocyclic graft copolymers composed of a hydrophilic poly(ethylene oxide) as ring and hydrophobic poly(?-caprolactone) as lateral chains with different grafting lengths and densities of side chains were prepared by a combination of anionic ring-opening polymerization and coordination-insertion ring-opening polymerization. The anionic ring-opening copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out first using triethylene glycol and diphenylmethyl potassium (DPMK) as co-initiators, and a linear α,ω-dihydroxyl poly(ethylene oxide) with pendant protected hydroxymethyls (l-poly(EO-co-EEGE)) was obtained. The monomer reactivity ratios of these compounds are r1(EO) = 1.20 ± 0.01 and r2(EEGE) = 0.76 ± 0.02, respectively. Then the ring closure of l-poly(EO-co-EEGE) was achieved via an ether linkage by reaction with tosyl chloride (TsCl) in the presence of solid KOH. The crude cyclized product containing the linear chain-extended polymer was hydrolyzed in acidic conditions first and then purified by treating with α-CD. The pure cyclic copolymer of EO and glycidol (Gly) with multipendant hydroxymethyls [c-poly(EO-co-Gly)] as the macroinitiator was used further to initiate the ring-opening polymerization of ?-caprolactone (CL), and a series of amphiphilic macrocyclic graft copolymers c-PEO-g-PCL were obtained. The final products and intermediates were characterized by GPC, NMR and MALDI-TOF in detail.  相似文献   

3.
Copolymerizations of ?-caprolactone (CL) with monohydroxyl or dihydroxyl poly(ethylene glycol) (PEG) were successfully performed using Novozyme-435 (immobilized lipase B from Candida antartica) as catalyst. Diblock and triblock copolymers with different compositions were characterized by 1H NMR, GPC, DSC and X-ray diffraction. The enzymatic copolymerization carried out in toluene presented higher reaction rate and yield than that in bulk. Increasing the [CL]/[EO] feed ratio resulted in increases of molecular weight (Mn) of copolymers. Moreover, the compositions of triblock copolymers were closer to the monomer feed ratios than those of diblock copolymers. The resulting copolymers were all semicrystalline, the crystalline structure being of the PCL type. Solution cast films were allowed to degrade in a pH 7.0 phosphate buffer solution containing Pseudomonas lipase. Weight loss data showed that the introduction of PEG segments to the PCL main chain did not alter the enzymatic degradation of PCL significantly.  相似文献   

4.
Zhiqiang Jiang  Yujing You  Xianmo Deng 《Polymer》2007,48(16):4786-4792
Thermogelling triblock copolymers of poly(?-caprolactone-co-glycolide)-poly(ethylene glycol)-poly(?-caprolactone-co-glycolide) [P(CL-GA)-PEG-P(CL-GA)] were successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. The aqueous solutions of the copolymers underwent sol-gel transition as the temperature was increased from 20 to 60 °C. The amphiphilic copolymer formed micelles in water and a gel was formed by aggregation of micelles. The structure parameters played a critical role in determining sol-gel transition behavior. Either increasing [GA]/[CL] ratio or decreasing P(CL-GA) block length could induce the increase of the lower sol-gel transition temperature. Glycolide (GA) was incorporated into the polymer chain to increase the polymer degradation rate. Sustained release of rifampicin for approximately 32 days was obtained from the gel. It is believed to have potential applications in drug delivery and tissue engineering.  相似文献   

5.
Boonhua Tan  Tijs Nabuurs 《Polymer》2005,46(4):1347-1357
Amphiphilic diblock and triblock copolymers consisting of poly(ethylene oxide) (PEO) as (central) hydrophilic segment and poly(ε-caprolactone) (PCL) as hydrophobic segment(s) were prepared by ring opening polymerization. The length of the PEO segment was kept constant , whereas the length of the PCL block(s) was either 6 or 10 units for diblock copolymers and 3 or 5 units at each end for the triblock copolymers. These block copolymers were end-functionalized by esterification with linoleic acid (LA), which contains reactive double bonds. The autoxidative behavior of PEO45-(CL3-LA)2 functionalized triblock copolymers was investigated by exposure of films to air at ambient conditions. Ninety percent of the double bonds had disappeared in 15 d and a crosslinked structure was obtained after 30 d. Critical micelle concentrations (CMC) of the crosslinkable surfactants were in the range of 0.08-0.19 mmol/l for the diblock copolymer and of 0.19-0.26 mmol/l for the triblock copolymer. The surface tension of aqueous surfactant solutions at the CMC (γCMC) (25 °C) varied from 47.1 to 51.4 mN/m for the diblock and from 45.6 to 48.1 mN/m for the triblock systems. For both systems CMC and γCMC increase with increasing HLB values. These surfactants were used in PMMA latex preparations. The latices of PMMA prepared with LA-functionalized diblock and triblock copolymers yielded narrow particle size distributions and particle sizes of 180 and 370 nm, respectively, whereas latices prepared with SDS had a particle size of 90 nm. After extraction of the latex particles with methanol, the amounts of the unextractable (either buried or copolymerized) LA-functionalized diblock and triblock copolymers found in extracted PMMA latex particles were 10 and 24% of the initial amount of surfactant added respectively. Control experiments with a stearic acid (SA) containing diblock copolymer showed that the amount of buried surfactant in PMMA latices was 6.5%. By comparing the overall latex characteristics and stability (shelf stability, freeze-thaw testing and addition of electrolyte solutions and ethanol) it was concluded that an LA-functionalized diblock copolymer (MPEO45-CL10-LA) gave better stabilization of PMMA latices than an LA-functionalized triblock copolymer of comparable composition and HLB value.  相似文献   

6.
Hiroki Takeshita 《Polymer》2006,47(24):8210-8218
Crystallization and structure formation of poly(ethylene oxide)-poly(?-caprolactone) block copolymers (PEG-PCL) in which the melting temperatures of the components are close to each other were elucidated using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The diblock copolymers with 33, 46 and 59 wt% of PEG composition formed ordinary single spherulites similar to those of PCL homopolymers, while concentric double-circled spherulites appeared for the PCL-PEG-PCL triblock copolymer with 66 wt% PEG composition as observed previously. For the diblock copolymers, despite of the ordinary appearance of the single spherulites, the DSC thermograms and the WAXD patterns indicated the crystallization of PEG as well as PCL. The time-resolved SAXS profiles for the diblock copolymers showed that long spacings of the crystal lamellae decreased stepwise in the crystallization process. Synthesizing these results for the single spherulites, it was concluded that PCL crystallized first followed by the crystallization of PEG with preservation of the PCL crystal lamellar structure. This means that PEG must crystallize within confined space between the formerly formed PCL crystal lamellae. Such confined crystallization of PEG caused the suppressed melting temperature, crystallinity and crystallization rate especially in the smaller PEG compositions. In the melting process of the diblock copolymers, it was observed that the PEG component first melted with a stepwise increase in the long spacing.  相似文献   

7.
In this work, we investigated the effect of formation mechanisms of nanophases on the morphologies and thermomechanical properties of the nanostructured thermosets containing block copolymers. Toward this end, the nanostructured thermosets involving epoxy and block copolymers were prepared via self-assembly and reaction-induced microphase separation approaches, respectively. Two structurally similar triblock copolymers, poly(ε-caprolactone)-block-poly(butadiene-co-styrene)-block-poly(ε-caprolactone) (PCL-b-PBS-b-PCL) and poly(ε-caprolactone)-block-poly(ethylene-co-ethylethylene-co-styrene)-block-poly(ε-caprolactone) (PCL-b-PEEES-b-PCL) were synthesized via the ring-opening polymerization of ε-caprolactone (CL) with α,ω-dihydroxyl-terminated poly(butadiene-co-styrene) (HO-PBS-OH) and α,ω-dihydroxyl-terminated poly(ethylene-co-ethylethylene-co-styrene) (i.e., HO-PEEES-OH) as the macromolecular initiators, respectively; the latter was obtained via the hydrogenation reduction of the former. Both the triblock copolymers had the same architecture, the identical composition and close molecular weights. In spite of the structural resemblance of both the triblock copolymers, the formation mechanisms of the nanophases in the thermosets were quite different. It was found that the formation of nanophases in the thermosets containing PCL-b-PBS-b-PCL followed a reaction-induced microphase separation mechanism whereas that in the thermosets containing PCL-b-PEEES-b-PCL was in a self-assembly manner. The different formation mechanisms of nanophases resulted in the quite different morphologies, glass transition temperatures (Tg's) and fracture toughness of the nanostructured thermosets.  相似文献   

8.
Triblock copolymer PCL-PEG-PCL was prepared by ring-opening polymerization of ε-caprolactone (CL) in the presence of poly(ethylene glycol) catalyzed by calcium ammoniate at 60 °C in xylene solution. The copolymer composition and triblock structure were confirmed by 1H NMR and 13C NMR measurements. The differential scanning calorimetry and wide-angle X-ray diffraction analyses revealed the micro-domain structure in the copolymer. The melting temperature Tm and crystallization temperature Tc of the PEG domain were influenced by the relative length of the PCL blocks. This was caused by the strong covalent interconnection between the two domains. Aqueous micelles were prepared from the triblock copolymer. The critical micelle concentration was determined to be 0.4-1.2 mg/l by fluorescence technique using pyrene as probe, depending on the length of PCL blocks, and lower than that of corresponding PCL-PEG diblock copolymers. The 1H NMR spectrum of the micelles in D2O demonstrated only the -CH2CH2O- signal and thus confirmed the PCL-core/PEG-shell structure of the micelles.  相似文献   

9.
Miroslav Štěpánek 《Polymer》2009,50(15):3638-12851
The self-assembly of two star copolymers, each consisting of four diblock arms of either poly(?-caprolactone)-block-poly(ethylene oxide), PCL-PEO, or polylactide-block-poly(ethylene oxide), PLA-PEO, with PEO blocks in the centers of the stars, have been studied by a combination of light scattering, atomic force microscopy, fluorometry and 1H NMR spectroscopy. Results of the study show that despite the very similar architecture of both star copolymers, the structures of their self-assembled nanoparticles differ. Unlike the (PLA-PEO)4 star copolymer which forms core/shell flower-like micelles, the association of the (PCL-PEO)4 copolymer leads to large micellar aggregates in which individual micelles are interconnected by shared unimers, having joint coronas formed by hydrophilic centers of the stars.  相似文献   

10.
The sequential ring-opening polymerizations (ROP) of ε-caprolactone (ε-CL) and L-lactide (LLA) with benzo-12-crown-4-imidazole carbene (B-12-C-4imY) as the catalyst have been performed. Using either benzyl alcohol or ethylene glycol as an initiator, the corresponding poly(ε-caprolactone)-poly(L-lactide) (PCL-b-PLLA) diblock or poly(L-lactide)-poly(ε-caprolactone)-poly(L-lactide) (PLLA-PCL-PLLA) triblock copolymers were easily prepared. The results indicated that B-12-C-4imY was quite effective for the copolymerization. The diblock copolymerization of ε-CL with LLA could only be achieved when ε-CL was first polymerized followed by LLA. Feeding the two monomers simultaneously, however, only resulted in the formation of LLA homopolymers. Thermogravimetric analysis (TGA) measurements demonstrated that block copolymers exhibited the decomposition temperature lower than the PCL homopolymer. The copolymers were characterized by 1H NMR and 13C NMR, FT-IR, GPC, and DSC analyses. 20?×?10 mm2 rectangular specimens made of the triblock copolymer were allowed to degrade in a pH?=?7.4 phosphate buffer at 37 °C. Degradation was monitored by various analytical techniques such as GPC, IR, and ESEM.  相似文献   

11.
Fanliang Meng  Tianxi Liu 《Polymer》2006,47(21):7590-7600
An amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(?-caprolactone) (PEO-b-PCL) was synthesized via the ring-opening polymerization of ?-caprolactone in the presence of a hydroxyl-terminated poly(ethylene oxide) monomethyl ether. The diblock copolymer was incorporated into epoxy thermosets. It is found that the formation of nanostructures of thermosetting blends is quite dependent on the uses of aromatic amine hardeners. For 4,4′-methylenebis(2-chloroaniline) (MOCA)-cured thermosetting system, the homogeneous morphology was obtained at the compositions investigated. Nonetheless, the nanostructured thermosets were obtained when the blends were cured with 4,4′-diaminodiphenylsulfone (DDS). The differential scanning calorimetry (DSC) showed that the nanostructured thermosets did not displayed any crystallinity although the subchains of the diblock copolymer are crystalline. The nanostructures were evidenced by means of atomic force microscopy (AFM), small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The dependence of morphological structures on the types of aromatic amines for epoxy and PEO-b-PCL thermosetting blends were interpreted on the basis of the difference in hydrogen bonding interactions resulting from the structure of curing agents. Considering the complete miscibility of the subchains (viz. PEO and PCL) with the precursors of epoxy resin before curing, it is judged that the formation of the nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation, which is in marked contrast to the mechanism of self-assembly, i.e., micelle structures of block copolymers are formed prior to curing, followed by fixing these nanostructures via curing.  相似文献   

12.
The effect of polydispersity on dilute solution properties and microphase separation of polydisperse high-molecular-weight (Mw > 105 g mol−1) polystyrene-block-poly(styrene-co-acrylonitrile) diblock copolymers, PS-block-P(S-co-AN), was studied in this work. For experiments, a series of diblock copolymers with variable weight fractions of acrylonitrile units (wAN = 0.08-0.29) and length of block P(S-co-AN) was synthesized using nitroxide-mediated radical polymerization (NMP) technique, namely, by chain extension of nitroxide-terminated polystyrene (PS-TEMPO). According to light scattering and viscometry measurements in dilute tetrahydrofuran (THF) solutions the studied diblock copolymers assumed random coil conformation with the values of characteristic structure factor Rg/Rh = 1.50-1.76. It was found that polydisperse diblock copolymers being in strong segregation limit (SSL) self-assembled into microphase-separated ordered morphologies at ordinary temperature. The long periods of lamellar microdomains were larger compared to theoretical predictions for hypothetical monodisperse diblock copolymers. It was demonstrated by means of SAXS and TEM that a transition from a lamellar (LAM) to irregular face-centered-cubic (FCC) morphology occurred with increasing volume fraction of P(S-co-AN) block.  相似文献   

13.
A poly(l-lactic acid)-block-polystyrene-block-poly(methyl methacrylate) (PLLA-b-PS-b-PMMA) triblock copolymer was synthesized with a crystalline PLLA end block. Single crystals of this triblock copolymer grown in dilute solution could generate uniformly tethered diblock copolymer brushes, PS-b-PMMA, on the PLLA single crystal substrate. The diblock copolymer brushes exhibited responsive, characteristic surface structures after solvent treatment depending upon the quality of the solvent in relation to each block. The chemical compositions of these surface structures were detected via the surface enhanced Raman scattering technique. Using atomic force microscopy, the physical morphologies of these surface structures were identified as micelles in cyclohexane and “onion”-like morphologies in 2-methoxyethanol, especially when the PS-b-PMMA tethered chains were at low tethering density.  相似文献   

14.
Minh Khanh Nguyen 《Polymer》2009,50(22):5205-8990
A series of novel pH-sensitive triblock copolymers composed of poly(β-amino ester)-poly(ethylene glycol)-poly(β-amino ester) (PAE-PEG-PAE) were synthesized by conjugating poly(β-amino ester) to poly(ethylene glycol). The resulting polymers were characterized by 1H and 13C NMR in CDCl3 and gel permeation chromatography in tetrahydrofuran. The concentrated polymer solutions (30 wt%) exhibited a gel-to-sol transition in the pH range 6.4-7.8. The gel window spanned physiological conditions (37 °C, pH 7.4). After injection into a rat, the copolymer solution (30 wt%) changed to a gel in a short time. This copolymer hydrogel showed bioadhesive properties and in vitro release of lidocaine was controllable.  相似文献   

15.
We demonstrated here a facile method to synthesize novel double crystalline poly(butylene terephthalate)-block-poly(ethylene oxide)-block-poly(butylene terephthalate) (PBT-b-PEO-b-PBT) triblock copolymers by solution ring-opening polymerization (ROP) of cyclic oligo(butylene terephthalate)s (COBTs) using poly(ethylene glycol) (PEG) as macroinitiator and titanium isopropyloxide as catalyst. The structure of copolymers was well characterized by 1H NMR and GPC. TGA results revealed that the decomposition temperature of PEO in triblock copolymers increased about 30 °C to the same as PBT copolymers, after being end-capped with PBT polymers. These triblock copolymers showed double crystalline properties from PBT and PEO blocks, observed from DSC and WAXD measurements. The melting and crystallization peak temperatures corresponding to PBT blocks increased with PBT content. The crystallization of PBT blocks showed the strong confinement effects on PEO blocks due to covalent linking of PBT blocks with PEO blocks, where the melting and crystallization temperatures and crystallinity corresponding to PEO blocks decreased significantly with increment of PBT content. The confinement effect was also observed by SAXS experiments, where the long distance order between lamella crystals decreases with increasing PBT length. For the triblock copolymer with highest PBT content (PBT54-b-PEO227-b-PBT54), this effect shows a 30 °C depression on PEO crystals' melting temperature and 77% on enthalpy, respectively, compared to corresponding PEO homopolymer. The crystal morphology was observed by POM, and amorphous-like spherulites were observed during PBT crystallization.  相似文献   

16.
Di Hu 《Polymer》2010,51(25):6047-5707
In this work, we investigated the self-assembly behavior of poly(?-caprolactone)-block-poly(ethylene-co-ethylethylene)-block-poly(?-caprolactone) (PCL-b-PEEE-b-PCL) triblock copolymer in epoxy thermosets. The PCL-b-PEEE-b-PCL triblock copolymer was synthesized via the ring-opening polymerization of ?-caprolactone with a hydroxyl-terminated poly(ethylene-co-ethylethylene) as the macromolecular initiator. The hydroxyl-terminated poly(ethylene-co-ethylethylene) was prepared with the hydrogenation reaction of a hydroxyl-terminated polybutadiene. The triblock copolymer was incorporated into the precursors of epoxy to obtain the nanostructured thermosets. It was found that the self-organized nanophases were formed in the mixture before curing reaction and the nanostructures can be further fixed via curing reaction. The self-assembly behavior of the triblock copolymer in epoxy thermosets was investigated by means of atomic force microscopy (AFM), small-angle X-ray scattering (SAXS) and dynamic mechanical thermal analysis (DMTA). Differential scanning calorimetry (DSC) shows that the formation of the self-organized nanophase in the thermosets caused that a part of poly(?-caprolactone) subchains were demixed from epoxy matrix with the occurrence of curing reaction; the fractions of demixed PCL blocks were estimated according to the Tg-composition relation of the model binary blends of epoxy and PCL.  相似文献   

17.
Yodthong Baimark 《Polymer》2009,50(20):4761-4767
Surfactant-free biodegradable porous microspheres of methoxy poly(ethylene glycol)-b-poly(?-caprolactone-co-d,l-lactide) (MPEG-b-PCLDLL) diblock copolymers were prepared by a simple melt dispersion method in water at 80 °C with magnetic stirring. Any organic solvents and surfactants can be neglected for this method. Different CL/DLL ratios in the MPEG-b-PCLDLL were investigated for preparation of the porous microspheres. It was found that microsphere sizes decreased and surface pore sizes increased as the increasing DLL ratio. The pores were well interconnected throughout the microsphere matrices for all MPEG-b-PCLDLLs. The larger pore sizes can be obtained when the PEG was blended with diblock copolymer before preparation of porous blended microspheres. Possible mechanisms for formation of the porous microspheres with and without PEG blending were also proposed.  相似文献   

18.
Zhiguang Xu 《Polymer》2007,48(20):6134-6144
Poly(?-caprolactone)-block-polydimethylsiloxane-block-poly(?-caprolactone) triblock copolymer (PCL-b-PDMS-b-PCL) was synthesized via the ring-opening polymerization of ?-caprolactone with dihydroxypropyl-terminated PDMS (HTPDMS) as the initiator. The triblock block copolymer was characterized by means of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). The triblock copolymer was incorporated to prepare nanostructured thermosetting blends. The morphology of the epoxy thermosets containing PCL-b-PDMS-b-PCL were investigated by means of atomic force microscopy (AFM), transmission electronic microscopy (TEM) and small-angle X-ray scattering (SAXS). The thermomechanical properties of the nanostructured blends were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The formation of the nanostructures in the thermosetting composites was judged to follow the self-assembly mechanism in terms of the difference in miscibility of PDMS and PCL subchains with epoxy resin after and before curing reaction.  相似文献   

19.
Dai Phu Huynh 《Polymer》2009,50(12):2565-8990
A series of poly(β-amino ester)-poly(?-caprolactone)-poly(ethylene glycol)-poly(?-caprolactone)-poly(β-amino ester) pentablock copolymers (PAE-PCL-PEG-PCL-PAE) were designed and prepared to examine factors affecting sol-gel phase transition behavior. First, the composition of a series of PCL-PEG-PCL copolymers was controlled by changing the feed ratios of PCL/PEG and the molecular weight of PEG. Second, the composition of pentablock copolymers was varied using different PCL-PEG-PCL copolymers and several feed ratios of PAE monomers. The physicochemical properties of triblock and pentablock copolymers were characterized by 1H NMR and gel permeation spectroscopy. The PAE-PCL-PEG-PCL-PAE copolymers in aqueous solution (20-30 wt%) underwent sol-gel transitions with changes in both pH change and temperature. With increasing molecular weight of PAE, the sol-gel transition zone became narrower because the hydrophobic character of the copolymers decreased. Also, with increases in PCL/PEG ratio and PEG molecular weight, changes in the hydrophobic/hydrophilic balance within copolymers resulted in alterations in sol-gel phase transitions.  相似文献   

20.
Jing Yu 《Polymer》2007,48(12):3477-3485
The crystallization of poly(?-caprolactone)-poly(ethylene oxide)-poly(?-caprolactone) (PCL-PEO-PCL) triblock copolymer was studied using FTIR and 2D FTIR spectroscopies. The weight ratio of PCL/PEO in the investigated sample was about 20:1. Although it is such a low amount of PEO that it cannot form any crystals, the PEO block undergoes some structural change in the cooling process. It was established that the PCL constituent crystallized quickly, and then forced the noncrystallizable PEO constituent to form a tighter structure (helical conformation) from the trans zigzag conformation. Besides, through the 2D IR analysis, more exact and detailed assignments of the overlapped CH2 bands have been made - the 1193 cm−1 band is attributed to methylene next to the carbonyl group, whereas the 1162 cm−1 and 1295 cm−1 bands are assigned to other common methylenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号