首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dispersion of magnetic nanoparticles (NPs) in homopolymer poly(methyl methacrylate) (PMMA) and block copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) films is investigated by TEM and AFM. The magnetite (Fe3O4) NPs are grafted with PMMA brushes with molecular weights from M = 2.7 to 35.7 kg/mol. Whereas a uniform dispersion of NPs with the longest brush is obtained in a PMMA matrix (P = 37 and 77 kg/mol), NPs with shorter brushes are found to aggregate. This behavior is attributed to wet and dry brush theory, respectively. Upon mixing NPs with the shortest brush in PS-b-PMMA, as-cast and annealed films show a uniform dispersion at 1 wt%. However, at 10 wt%, PS-b-PMMA remains disordered upon annealing and the NPs aggregate into 22 nm domains, which is greater than the domain size of the PMMA lamellae, 18 nm. For the longest brush length, the NPs aggregate into domains that are much larger than the lamellae and are encapsulated by PS-b-PMMA which form an onion-ring morphology. Using a multi-component Flory-Huggins theory, the concentrations at which the NPs are expected to phase separate in solution are calculated and found to be in good agreement with experimental observations of aggregation.  相似文献   

2.
Polystyrene/polystyrene-block-poly(methyl methacrylate)/poly(methyl methacrylate) (PS/PS-b-PMMA/PMMA) composite particles were prepared by releasing toluene from PS/PS-b-PMMA/PMMA/toluene droplets dispersed in a sodium dodecyl sulfate aqueous solution. The morphology of the composite particles was affected by release rate of toluene, the molecular weight of PS-b-PMMA, droplet size, and polymer composition. ‘Onion-like’ multilayered composite particles were prepared from toluene droplets of PS-b-PMMA and of PS/PS-b-PMMA/PMMA, in which the weights of PS and PMMA were the same. The layer thicknesses of the latter multilayered composite particles increased with an increase in the amount of the homopolymers. PS-b-PMMA/PS composite particles had a sea-islands structure, in which PMMA domains were dispersed in a PS matrix. On the other hand, PS-b-PMMA/PMMA composite particles had a cylinder-like structure consisting of a PMMA matrix and PS domains.  相似文献   

3.
Here, an alternative route to successfully synthesize polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) is reported. Steglich esterification was used as an effective, metal free approach for coupling carboxylic terminated PS and the hydroxyl end-functionalized PMMA chains obtained by nitroxide-mediated polymerization and atom transfer radical polymerization, respectively. α-Functionalization was obtained using 4,4′-azobis(4-cyanovaleric acid) and 2,2,2-tribromoethanol as initiators. The synthesis of PS-b-PMMA was confirmed by gel permeation chromatography and nuclear magnetic resonance (NMR), while the dependence of the diffusion coefficients of the polymers (PS, PMMA, PS/PMMA blend, and PS-b-PMMA) with their corresponding molecular weights was discussed based on the results of atomic force microscopy-based infrared spectroscopy, differential scanning calorimetry, and spectra of diffusion-ordered NMR spectroscopy. Differently from PS-b-PMMA, a partial segregation was observed for the PS/PMMA blend, affecting its thermal behavior and diffusion coefficient. The study here presented provides an easier and efficient strategy for the synthesis of PS-b-PMMA and new insights into the diffusion of polymers.  相似文献   

4.
Polystyrene-b-poly(methyl acrylate) (PS-b-PMA) block copolymer with PS volume fraction of 25.2 vol% was synthesized by atom transfer radical polymerization. Non-pretreated silicon wafers were used as the substrates to prepare perpendicular oriented PS cylinders in PMA matrix via solvent annealing which could induce the transformation of spheres to vertically oriented and hexagonally packed cylinders. The spherical microdomains were formed after the evaporation of solvents from the solutions of the block copolymer in selective solvents mixed from methanol, acetone and dichloromethane. The thickness of films could be as thick as 1000 nm, which were much thicker than usual cases and the cylinders came from the directional coalescence of the spheres, thus any pre-treatments of the substrates were not required for perpendicular orientation. The structures were characterized by small angle X-ray scattering (SAXS), transmission electron microscope (TEM), atom force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS).  相似文献   

5.
Joachim Schmelz  Holger Schmalz 《Polymer》2012,53(20):4333-4337
We present a straightforward approach to well-defined 1D patchy particles utilizing crystallization-induced self-assembly. A polystyrene-block-polyethylene-block-poly(methyl methacrylate) (PS-b-PE-b-PMMA) triblock terpolymer is cocrystallized in a random fashion with a corresponding polystyrene-block-polyethylene-block-polystyrene (PS-b-PE-b-PS) triblock copolymer to yield worm-like crystalline-core micelles (wCCMs). Here, the corona composition (PMMA/PS fraction) can be easily adjusted via the amount of PS-b-PE-b-PMMA triblock terpolymer in the mixture and opens an easy access to wCCMs with tailor-made corona structures. Depending on the PMMA fraction, wCCMs with a mixed corona, spherical PMMA patches embedded in a continuous PS corona, as well as alternating PS and PMMA patches of almost equal size can be realized. Micelles prepared by cocrystallization show the same corona structure as those prepared from neat triblock terpolymers at identical corona composition. Thus, within a certain regime of desired corona compositions the laborious synthesis of new triblock terpolymers for every composition can be circumvented.  相似文献   

6.
7.
B.H. Sohn  S.H. Yun 《Polymer》2002,43(8):2507-2512
We obtained perpendicular lamellar orientations in thin films of symmetric polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, on self-assembled monolayers (SAMs) of 3-(p-methoxyphenyl)propyltrichlorosilane (MPTS) prepared on silicon wafers. In contrast to completely parallel lamellae on silicon wafers having a native oxide layer, perpendicular lamellae at the MPTS interface with parallel lamellae at the air interface were directly observed by transmission electron microscopy (TEM) in cross-sectional view. The perpendicular lamellae at the MPTS interface were attributed to the non-preferential (neutral) MPTS-covered substrate to both PS and PMMA blocks. The neutrality of the SAMs of MPTS was confirmed by the similar interfacial tension values of the SAMs of MPTS with PS and PMMA, estimated by contact angle measurements.  相似文献   

8.
Jong Kwan Lee  Hae Jin Lim  Seong Mo Jo 《Polymer》2006,47(15):5420-5428
This study examined the microdomain structures and the crystallization behavior in binary blends consisting of an asymmetric block copolymer and a homopolymer using small-angle X-ray scattering, optical microscopy and differential scanning calorimetry. A polystyrene-block-poly(methyl methacrylate) copolymer (PS-b-PMMA) was mixed with a low molecular weight poly(vinylidene fluoride) (PVDF), where the PS-b-PMMA had a 0.30 wt fraction of the PMMA block. At a PVDF concentration of <13.0 wt%, the PVDF was completely miscible with the PMMA microdomains, and the blends had a cylindrical structure. The addition of PVDF altered the morphology from a PMMA-cylindrical structure to a lamellar structure and finally to a PS-cylindrical structure. When the PVDF concentration was <23.0 wt%, the PVDF was distributed uniformly within the PMMA microdomains. After adding more PVDF, some of the PVDF was locally dissolved in the middle of the PMMA microdomains. The addition of PVDF also affected the ordered microstructure in the blends, leading to a well-defined microdomain structure. However, PVDF crystallization significantly disturbed the pre-existing microdomain structure, resulting in a poorly ordered morphology. In the blends, PVDF had unique crystallization behavior as a result of the space constraints imposed by the microdomains.  相似文献   

9.
Juan Peng 《Polymer》2005,46(15):5767-5772
The dewetting pattern development of thin film of poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer has been studied after ‘annealing’ in the PMMA block selective solvent vapor. Initially, typical circular dewetted holes are observed. Further annealing, however, results in the formation of fractal-like holes. The heterogeneous stress induced by the residual solvent remaining in the film after spin-coating induces the anisotropy of the polymer mobility during the annealing process, which triggers the formation of the intriguing surface patterns.  相似文献   

10.
The time development of the surface morphology of asymmetric polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) thin films ‘annealing’ in methanol vapor, a selective solvent for minority P4VP block, was investigated by atomic force microscopy(AFM). For PS-b-P4VP with cylindrical structure in bulk, as annealing time progressed, the surface morphology underwent structural transitions from featureless topography to hybrid morphology of cylindrical and spherical pits, to cylinders, to nanoscale depressions, back to cylinders again. The different film thickness made the number of the transitions observed, at any given annealing time, different. The thicker the film is the more transitions at a given annealing time can be observed. If the film was not thick enough, depressions appeared. For PS-b-P4VP with spherical structure in bulk, it displayed nanoscale depressions with the annealing time increasing. A possible mechanism of the transition of morphologies during solvent annealing was proposed.  相似文献   

11.
Mohammad Tariqul Islam 《Polymer》2011,52(22):5212-5220
A systematical study on the morphological transition of the micelle films of semi-fluorinated poly(ethylene oxide)-b-poly(1H,1H-dihydro perfluorooctyl methacrylate) (PEO-b-PFOMA) diblock copolymers was carried out upon perfluroalkanes (PF-5080) or α,α,α-trifluorotoluene (TFT) solvent annealing. Poorly ordered short cylindrical structures of the PEO5k-b-PFOMA21k micelle film underwent a phase inversion with PEO cores in the PFOMA continuous phase with a short period of PF-5080 solvent annealing. In contrast, the highly ordered morphology of PEO10k-b-PFOMA21k with PFOMA cores in the PEO continuous phase developed into cylindrical microdomains presumably via the fusion process. Prolonged annealing of the film transformed its morphology into inverted-spherical domains of PEO in the PFOMA continuous phase through long-range ordering by following the fission process. In order to find out a synthetic application of the morphology inversion strategy, an attempt was undertaken by adding a gold precursor to the PEO10k-b-PFOMA21k micelle solution, and as-cast thin films were prepared accordingly. Upon PF-5080 solvent annealing, the nanoparticles populated in self-assembled thin films resulted in inverted-spherical domains having gold nanoparticles populated in PEO cores surrounded by the PFOMA continuous phase. When the annealing solvent was changed to TFT, a highly ordered in-plane cylindrical morphology with respect to the substrate was achieved from the poorly ordered cylindrical microdomains of the PEO5k-b-PFOMA21k thin film, whereas an uneven cylindrical structure was produced from PEO10k-b-PFOMA21k.  相似文献   

12.
Wenchun Fan  Sixun Zheng 《Polymer》2008,49(13-14):3157-3167
Polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymers with linear and tetra-armed star-shaped topological structures were synthesized via sequential atomic transfer radical polymerization (ATRP). With pentaerythritol tetrakis(2-bromoisobutyrate) as the initiator, the star-shaped block copolymers with two sequential structures (i.e., s-PMMA-b-PS and s-PS-b-PMMA) were prepared and the arm lengths and composition of the star-shaped block copolymers were controlled to be comparable with those of the linear PS-b-PMMA (denoted as l-PS-b-PMMA). The block copolymers were incorporated into epoxy resin to access the nanostructures in epoxy thermosets, by knowing that PMMA is miscible with epoxy after and before curing reaction whereas the reaction-induced phase separation occurred in the thermosetting blends of epoxy resin with PS. Considering the difference in miscibility of epoxy with PMMA and/or PS, it is judged that the reaction-induced microphase separation occurred in the systems. The design of these block copolymers allows one to investigate the effect of topological structures of block copolymers on the morphological structures of the thermosets. By means of atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS), the morphology of the thermosets was examined. It is found that the nanostructures were formed in the thermosets containing l-PMMA-b-PS and s-PS-b-PMMA block copolymers. It is noted that the long-range order of the nanostructures in the epoxy thermosets containing l-PMMA-b-PS is obviously higher than that in the system containing s-PS-b-PMMA. However, the macroscopic phase separation occurred in the thermosetting blends of epoxy resin with s-PMMA-b-PS block copolymer.  相似文献   

13.
Xue Li  Hui Yang  Limei Xu  Dong Ha Kim 《Polymer》2008,49(5):1376-1384
The effects of additives of poly(methyl methacrylate) (PMMA) and HAuCl4 on the morphologies of hybrid titania films formed via co-assembly of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers, titania sol-gel precursor in a selective solvent were investigated. The results show that addition of PMMA or HAuCl4 has an important influence on the morphologies of hybrid titania films. Addition of PMMA or HAuCl4 can induce the morphology transition of the PS-b-PEO/titania sol-gel mixture from spherical micelles to vesicles. Therefore, the morphologies of the hybrid films formed on silicon substrate surfaces by spin-coating can be controlled by the addition of homopolymer (PMMA) or inorganic precursor (HAuCl4) into the PS-b-PEO/titania sol-gel mixtures, allowing access to nanoparticles or nanoporous films. After removing the polymer matrix, nanoparticle aggregates or nanobowl-like structures are left behind on the substrate surfaces.  相似文献   

14.
We report a new approach to fabricate versatile nanoporous templates with high aspect ratios by incorporating silicon-containing block copolymers into the lithographic bilayer system. This approach used a top thin film of self-assembled asymmetric polystyrene-block-poly(4-(tert-butyldimethylsilyl)oxystyrene) (PS-b-PSSi) as a hard etch mask and an underlying thick film of a negative-tone photoresist (SU-8) for pattern transfer. The assembly of PS-b-PSSi was well-controlled by solvent annealing on the SU-8 and deep nanopores were formed in the underlying layer by oxygen reactive ion etching due to high etch contrast. As a result, highly dense and uniform nanoporous templates with high aspect ratios were obtained over a large area. These templates have versatilities to easily control the sizes of nanopores and to make on the diverse functional substrates. Moreover, the dry-etch process during removal of nanotemplates prevented collapse and aggregation of nanostructures. As a demonstration, we fabricated vertically ordered freestanding gold nanorod arrays by using these templates.  相似文献   

15.
A poly(l-lactic acid)-block-polystyrene-block-poly(methyl methacrylate) (PLLA-b-PS-b-PMMA) triblock copolymer was synthesized with a crystalline PLLA end block. Single crystals of this triblock copolymer grown in dilute solution could generate uniformly tethered diblock copolymer brushes, PS-b-PMMA, on the PLLA single crystal substrate. The diblock copolymer brushes exhibited responsive, characteristic surface structures after solvent treatment depending upon the quality of the solvent in relation to each block. The chemical compositions of these surface structures were detected via the surface enhanced Raman scattering technique. Using atomic force microscopy, the physical morphologies of these surface structures were identified as micelles in cyclohexane and “onion”-like morphologies in 2-methoxyethanol, especially when the PS-b-PMMA tethered chains were at low tethering density.  相似文献   

16.
PVDF sheets, rapidly quenched, were (1) two-step transversely stretched at various temperatures and (2) stretched at various temperatures, rolled at room temperature and then annealed. The orientation patterns of the β-form crystal (which contains the polar b-axis) in these films were analysed on the basis of X-ray diffraction photographs taken with flat and cylindrical cameras. In the case of (1), when both of the two-step transversely stretching temperatures were below 100°C, a doubly oriented film with the plar b-axis oriented parallel to the film surface was obtained. In the case of (2), when the stretching temperature was below 100°C, the sheets then rolled without annealing, another doubly oriented film with the polar b-axis preferentially oriented at 30° to the film surface was obtained. On the other hand, when these films were annealed above 100°C, or the stretching temperatures were above 100°C, orientation patterns in which the polar b-axis was partially rotated through 60° were obtained. The orientation mechanisms of these films are discussed using the measurements of the lattice spacings of the β-form crystal.  相似文献   

17.
I.A. Zucchi 《Polymer》2005,46(8):2603-2609
Polystyrene (PS, Mn=28,400, PI=1.07), poly(methyl methacrylate) (PMMA, Mn=88,600, PI=1.03), and PS (50,000)-b-PMMA (54,000) (PI=1.04), were used as modifiers of an epoxy formulation based on diglycidyl ether of bisphenol A (DGEBA) and m-xylylene diamine (MXDA). Both PS and PMMA were initially miscible in the stoichiometric mixture of DGEBA and MXDA at 80 °C, but were phase separated in the course of polymerization. Solutions containing 5 wt% of each one of both linear polymers exhibited a double phase separation. A PS-rich phase was segregated at a conversion close to 0.02 and a PMMA rich phase was phase separated at a conversion close to 0.2. Final morphologies, observed by scanning electron microscopy (SEM), consisted on a separate dispersion of PS and PMMA domains. A completely different morphology was observed when employing 10 wt% of PS-b-PMMA as modifier. PS blocks with Mn=50,000 were not soluble in the initial formulation. However, they were dispersed as micelles stabilized by the miscible PMMA blocks, leading to a transparent solution up to the conversion where PMMA blocks began to phase separate. A coalescence of the micellar structure into a continuous thermoplastic phase percolating the epoxy matrix was observed. The elastic modulus and yield stress of the cured blend modified by both PS and PMMA were 2.64 GPa and 97.2 MPa, respectively. For the blend modified by an equivalent amount of block copolymer these values were reduced to 2.14 GPa and 90.0 MPa. Therefore, using a block copolymer instead of the mixture of individual homopolymers and selecting an appropriate epoxy-amine formulation to provoke phase separation of the miscible block well before gelation, enables to transform a micellar structure into a bicontinuous thermoplastic/thermoset structure that exhibits the desired decrease in yield stress necessary for toughening purposes.  相似文献   

18.
Ae Jung Jang 《Polymer》2010,51(15):3486-6531
Block copolymer micelle can be used as nano-reactor where separated domains serve as a compartment for the production of nanomaterials, ultimately creating nanocomposite materials. In this work, thin nanocomposite films generated from polystyrene-b-poly(acrylic acid) (PS-b-PAA) micellar solution in which small amount of inorganic precursor was added were investigated. The films were prepared by spin coating onto silicon substrate, and then solvent-annealed. As-spun films exhibit typical micellar structure with spherical shape along which inorganic nanoparticles are dispersed. Such morphology remains unchanged after solvent annealing for micellar films with small amount of inorganic precursor. However, further increase in the amount of inorganic precursors brings about the morphological changes, producing different organization of inorganic nanoparticles in composite films. This behavior was found to strongly depend on the types of precursors and solvents used for annealing. These results illustrate a simple yet useful route to generate the polymeric nanocomposites with diverse structure and composition.  相似文献   

19.
We report on the preparation of nanoporous films based on an amphiphilic graft copolymer of poly(vinyl chloride-graft-methyl methacrylate), i.e., PVC-g-PMMA. The PVC-g-PMMA graft copolymer was synthesized via atom transfer radical polymerization (ATRP), as confirmed by nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform-infrared (FT-IR) spectroscopy, and gel permeation chromatography (GPC) analysis. The PVC-g-PMMA graft copolymer molecularly self-assembled into nanophase domains of PVC main chains and PMMA side chains, as revealed by wide angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). The graft copolymer film prepared from tetrahydrofuran (THF), a good solvent for both chains, had a random microphase-separated morphology. However, when prepared from dimethyl sulfoxide (DMSO), a solvent selectively good for PVC, the film exhibited a micellar morphology consisting of a PMMA core and a PVC corona. Nanoporous films with different pore sizes and shapes were prepared through the selective etching of PMMA chains using a combined process of UV irradiation and acetic acid treatment.  相似文献   

20.
We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号