首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Anhydrous proton conductive KHSO4–H3PW12O40 (KHS–WPA) composites were successfully synthesized using mechanochemical treatment. 95KHS·5WPA (mol%) composite, for example, showed very high anhydrous proton conductivity of 1.3 × 10−2 to 2.4 × 10−3 S cm−1 in a temperature range from 160 °C to 80 °C under ambient pressure. Chemical interactions via ion-exchange and hydrogen bond between KHS and WPA were confirmed from structural studies. Furthermore, the anhydrous proton conductivity of the KHS–WPA composites was well correlated with their estimated hydrogen bonding distance, indicating that reduction of the hydrogen bonding distance in the KHS–WPA composites is significant in the proton hopping to achieve anhydrous high proton conductivity.  相似文献   

2.
Barbara Przyjazna 《Polymer》2004,45(8):2559-2566
The series of new dyes, which structures are based on 6H-indolo[2,3-b]quinoxaline skeleton that possess characteristic electronic absorption band at a boundary of UV and visible light were tested as potential light absorbing chromophores for photoinitiated polymerization.The studied dyes can be classified into two different groups. The first is the group, so called ‘the branched dyes’, which structures possess the part of molecule that can rotate without restraints and are characterized by low photoinitiation ability. The second, planar and rigid group of molecules provides another chromophores, which possess quite different properties in comparison to that observed for the branched dyes. Their photoinitiation ability is comparable to that observed for many commercially available photoinitiating systems.The location of electronic absorption spectra at a boundary of UV and visible light makes the tested dyes the good candidates for the photoinitiating system applied in dental restorative materials. Their high molar absorption coefficient allows to decrease the dyes concentration in dental formulation in comparison to commonly used camphorquinone.  相似文献   

3.
A series of 2-(1H-benzo[d]imidazol-2-yl)-N-benzylidenequinolin-8-amines was synthesized and characterized. They are stable as solids while displaying a tendency to decompose in solution. On reaction with NiCl2, different coordination pattern sets of L·NiCl2 or [L2Ni]2+·2Cl are obtainable in THF or ethanol. When activated by Et2AlCl, the complexes L·NiCl2 exhibit good to high catalytic activities and selectivities for 1-C4 in ethylene oligomerization, while the complexes [L2Ni]2+·2Cl hardly showed any activity, which is attributable to nickel coordination by two ligands barring interaction of ethylene with the metal center.  相似文献   

4.
Six novel 3-alkyl(aryl)-4-(p-nitrobenzoylamino)-4,5-dihydro-1H-1,2,4-triazol-5- ones (2a-f) were synthesized by the reactions of 3-alkyl(aryl)-4-amino-4,5-dihydro-1H- 1,2,4-triazol-5-ones (1a-f) with p-nitrobenzoyl chloride and characterized by elemental analyses and IR, 1H-NMR, 13C-NMR and UV spectral data. The newly synthesized compounds 2 were titrated potentiometrically with tetrabutylammonium hydroxide in four non-aqueous solvents such as acetone, isopropyl alcohol, tert-butyl alcohol and N,N-dimethylformamide, and the half-neutralization potential values and the corresponding pKa values were determined for all cases. Thus, the effects of solvents and molecular structure upon acidity were investigated. In addition, isotropic 1H and 13C nuclear magnetic shielding constants of compounds 2 were obtained by the gauge-including-atomic-orbital (GIAO) method at the B3LYP density functional level. The geometry of each compound has been optimized using the 6-311G basis set. Theoretical values were compared to the experimental data. Furthermore, these new compounds and five recently reported 3-alkyl-4-(2-furoylamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (3a–c,e,f) were screened for their antioxidant activities.  相似文献   

5.
Under hydrothermal conditions using a triazole derivative ligand 3-carboxylic acid-4H-1,2,4-triazole (HL) and corresponding lead(II) salts, a novel two-dimensional(2D) lead(II) complex {[Pb(L)(μ2-Cl)(H2O)}n (1) has been isolated. In 1 Pb2Cl2(H2O)2 building blocks can be observed, which are extended by tetra-dentate coordinated L ligands to form a 2D corrugated layered structure. 1 also represents a novel example of luminescent lead(II) frameworks with triazole derivatives. Solid-state fluorescence spectrum of 1 exhibits the excited peak at 376 nm while the emission peak at 604 nm.  相似文献   

6.
The influence of the swelling history on the swelling behavior of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] P[(N-iPAAm)-co-(MAA)] random copolymers hydrogels synthesized by free radical polymerization in solution of N-iPAAm and MAA comonomers crosslinked with tetraethylene glycol dimethyl acrylate (TEGDMA) has been studied. The swelling behavior under pH 7 at 18, 29, 39 and 49 °C of this series of copolymers, previously soaked either at pH 2 or 7 has been investigated. The swelling kinetics of these two series of samples displays different behavior as function of the composition and temperature. However, the equilibrium swelling values only show slight dependences on the previous soaking pH and temperature. When samples are soaked at pH 7, then the swelling at pH 7 follows a first order kinetics, irrespective of the copolymer composition or the temperature at which the experiment has been carried out. In this case, the swelling process is very fast and depends only slightly on temperature. The first order rate constant increases with the MAA content in the hydrogel. Furthermore, the swelling rate of copolymer hydrogels soaked at pH 2, show strong dependence on composition and temperature. They follow an autocatalytic swelling kinetics due to the disruption of hydrogen bond arrangements. An initial slow water uptake is followed by an acceleration process, in which water molecules inside the gel help the next water molecules to come in. Two rate constants, a first-order rate constant and an autocatalytic one have been obtained from the kinetics analysis. They have revealed different temperature dependence which may be due to a balance between hydrophobic and hydrogen bond interactions. The temperature dependence of the swelling kinetics is stronger and more complex for copolymers treated under pH 2 than for copolymers soaked under pH 7.  相似文献   

7.
New telechelic cis-1,4-polyisoprene oligomers bearing an hydroxyl group at the end of the polyisoprene backbone and possessing controlled molecular weights were used as soft segments in the elaboration of polyurethane elastomers. Besides, the well defined hydroxytelechelic cis-1,4-polyisoprene (HTPI) structure obtained through a controlled methodology, was chemically modified leading to hydrogenated and epoxidized oligomers based polyurethanes. The influence of the structural changes of these precursors on the polyurethanes properties have been studied. Thus, mechanical parameters as well as glass transition and mechanical transition temperature measurements indicated an increase in PUs hardness when the length of soft segment decreases and when the degree of epoxidized and hydrogenated isoprenic moieties increases. Moreover, based on thermogravimetric analysis (TGA), a linear relationship was established between the weight loss in the urethane stage degradation and the amount of hard segments in the PUs. Otherwise, the hydrogenated soft segments were found more thermally stable than the epoxidized and the non modified ones. By comparison with similar investigations developed from commercial oligodienes (PBHT R20 LM® and EPOL®), this study mainly showed that the PUs based on hydrogenated hydroxytelechelic cis-1,4-polyisoprenes were more thermally stable and softer than the EPOL® based analogues.  相似文献   

8.
9.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

10.
L.X He  H.I Yoo 《Electrochimica acta》2003,48(10):1357-1366
Effect on the ionic conductivity of B-site ion (M) substitution in (Li3xLa2/3−x)1+y/2MyTi1−yO3 (M=Al, Cr) has been investigated. It has been found that partial substitution of smaller Al3+ for Ti4+ is effective to enhance the ionic conductivity of Li3xLa2/3−xTiO3. At 300 K, the maximum bulk conductivity of (1.58±0.01)×10−3 S cm−1 is observed from the composition of (Li0.39La0.54)1−y/2AlyTi1−yO3 with y=0.02 (x=0.13), that is the highest yet reported for known perovskite solutions at room temperature. The conductivity enhancement is interpreted as being due to the substitution-induced bond-strength change rather than due to bottleneck size change for Li migration, TiO6-octahedron tilting or A-site cation ordering.  相似文献   

11.
The permeabilities of He, H2, N2, O2, CO2, CH4, C2H6, C3H8, and n-C4H10 in poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA) and poly[diphenylacetylene] (PDPA) are presented and compared to those of poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and polysulfone. Like PTMSP, PTMSDPA, a disubstituted glassy acetylene-based polymer, exhibits higher permeabilities to organic vapors than to permanent gases due to its rigid polyacetylene backbone and bulky side groups, which provide a relatively high fractional free volume (FFV) value of 0.26. Desilylation was performed on PTMSDPA. The resulting material, PDPA, is totally insoluble in common organic solvents, so it has much higher chemical resistance than PTMSDPA. Additionally, due to its insolubility in polymerization solvents, desilylation provides the only known route to high molar mass PDPA. The FFV of the resulting membrane (PDPA) is reduced by approximately 12% relative to that of PTMSDPA. This leads to a decrease in gas permeability values and selectivity of organic vapors relative to nitrogen. For example, the oxygen permeability is reduced from 1200 to 500 Barrers upon desilylation. The pure gas selectivities decrease from 9 to 3 for n-C4H10/N2 and from 26 to 9 for C3H8/N2.  相似文献   

12.
A potentiometric aluminium sensor, based on the use N,N′-bis(salicylidene)-1,2-cyclohexanediamine (NBSC) as a neutral carrier, in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), tri-n-butyl phosphates (TBP), dioctylpththalate (DOP) & chloronapthalen (CN), and anion excluder, sodium tetraphenylborate (NaTPB) was studied. The best performance was obtained with a membrane composition of PVC: o-NPOE: NBSC: NaTPB ratio (w/w; mg) of 150:150:5:5. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 1.0 × 10−8-1.0 × 10−1 M with a lower detection limit of 5.0 × 10−9 M and a Nernstian slope of 20.3 ± 0.1 mV decade−1 of activity. Influence of the membrane composition and possible interfering ions was investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor shows response time of <5 s and can be used for about 3 months without any considerable divergence in their potential response. Selectivity coefficients determined by matched potential method (MPM) indicate high selectivity for aluminium (III) ion. The proposed electrode shows fairly good discrimination of aluminium (III) from many metal ions. It was successfully applied for direct determination of aluminium (III) in biological, industrial and environmental samples. The electrode can be used in the pH range of 2.0-9.0 and mixtures containing up to 20% (v/v) non-aqueous content. It was used as an indicator electrode in potentiometric titration of aluminium ion vs. EDTA.  相似文献   

13.
The microwave dielectric properties of (BaxMg1−x)(A0.05Ti0.95)TiO3 (A=Zr, Sn) ceramics were investigated with regard to substitution of Ba for Mg of A-site. The microwave dielectric properties were correlated with the Ba content. With an increase in Ba content from 0.01 to 0.1, the dielectric constant and the τf value increased, but the Q×f value decreased. The sintered (BaxMg1−x)(Zr0.05Ti0.95)TiO3 (called BxMZT) ceramics had a permittivity in the range of 19.1−20.6, quality factor from 180,000 to 25,000 GHz, and variation in temperature coefficient of resonant frequency from −35 to −39 ppm/°C with increasing composition x. For sintered (BaxMg1−x)(Sn0.05Ti0.95)TiO3 (called BxMST) ceramics, the dielectric constant increased from 19 to 20.5, Q×f value increased from 120,000 to 37,000 (GHz), and the τf value increased from −50 to −3.3 ppm/°C as the x increased from 0.01 to 0.1. When A=Sn and x=0.1, (Ba0.1Mg0.9)(Sn0.05Ti0.95)TiO3 ceramics exhibited dielectric constant of 20.5, Q×f value of 37,000 (GHz), and a near-zero τf value of −3.3 ppm/°C sintered at 1210 °C for 4 h.  相似文献   

14.
15.
Two methods have been compared for preparing artificially phase-separated two-component SAMs on Au(1 1 1) composed of 11-amino-1-undecanethiolates (AUTe) and 10-carboxyl-1-decanethiolates (CDTe), which would form, thermodynamically, a homogeneously mixed binary SAMs. The first method starts with the formation of a phase-separated binary SAM of AUTe and 2-hydroxy-1-ethanethiolate (HETe) as a template of the artificially phase-separated SAM, followed by the selective desorption of HETe domains and succeeding filling of the vacancy with CDTe. The second method utilizes fluoren-9-ylmethyl N-(11-mercaptoundecyl) carbamate (FMUCe) instead of 11-amino-1-undecanethiol in preparing the template. After the filling with CDTe, the 9-fluorenylmethyloxycarbonyl (Fmoc) group is removed to obtain AUTe domains. Both methods yield artificially phase-separated binary SAMs having AUTe domains of tens nanometer across. The molecularly flat SAM surface with nanometer-scale domains of different acid-base and electrostatic properties are thus created. For preparing binary SAMs with a higher degree of phase separation, the second method is a better choice; a more clear-cut phase separation is achieved.  相似文献   

16.
Robust MIMO PID controllers tuning based on complex/real ratio of the characteristic matrix eigenvalues is proposed. It is showed that this tuning criterion is equivalent to H optimal control. Under the proposed criterion, the tuning problem is stated as an optimization problem, in which the complex/real ratio of the characteristic matrix eigenvalues, a Lyapunov quadratic index, and the spectral abscissa were simultaneously minimized. Proposed criterion was applied to the multivariate controls of a distillation column, and a non-linear chemical reactor, both reported in the literature.  相似文献   

17.
Proton-exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for efficient power generation in the 21st century. Currently, high temperature proton exchange membrane fuel cells (HT-PEMFC) offer several advantages, such as high proton conductivity, low permeability to fuel, low electro-osmotic drag coefficient, good chemical/thermal stability, good mechanical properties and low cost. Owing to the aforementioned features, high temperature proton exchange membrane fuel cells have been utilized more widely compared to low temperature proton exchange membrane fuel cells, which contain certain limitations, such as carbon monoxide poisoning, heat management, water leaching, etc. This review examines the inspiration for HT-PEMFC development, the technological constraints, and recent advances. Various classes of polymers, such as sulfonated hydrocarbon polymers, acid-base polymers and blend polymers, have been analyzed to fulfill the key requirements of high temperature operation of proton exchange membrane fuel cells (PEMFC). The effect of inorganic additives on the performance of HT-PEMFC has been scrutinized. A detailed discussion of the synthesis of polymer, membrane fabrication and physicochemical characterizations is provided. The proton conductivity and cell performance of the polymeric membranes can be improved by high temperature treatment. The mechanical and water retention properties have shown significant improvement., However, there is scope for further research from the perspective of achieving improvements in certain areas, such as optimizing the thermal and chemical stability of the polymer, acid management, and the integral interface between the electrode and membrane.  相似文献   

18.
Modifications of carbon for polymer composites and nanocomposites   总被引:1,自引:0,他引:1  
The various forms of carbon used in composite preparation include mainly carbon-black, carbon nanotubes and nanofibers, graphite and fullerenes. This review presents a detailed literature survey on the various modifications of the carbon nanostructures for nanocomposite preparation focusing upon the works published in the last decade. The modifications of each form of carbon are considered, with a compilation of structure-property relationships of carbon-based polymer nanocomposites. Modifications in both bulk and surface modifications have been reviewed, with comparison of their mechanical, thermal, electrical and barrier properties. A synopsis of the applications of these advanced materials is presented, pointing out gaps to motivate potential research in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号