首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partitioning of the 1-butene co-unit between crystalline and non-crystalline regions of random, homogeneous propylene 1-butene copolymers (PB) has been studied by WAXD, 13C NMR, and FTIR in a series of copolymers with a concentration of 1-butene ranging from 2 to ~ 20 mol%. A partial inclusion of the 1-butene co-unit in the crystallites is identified by the expansion of the unit cell, and quantified by extracting 13C NMR spectra of the crystalline regions. For slowly cooled copolymers, about 30% of the chain’s 1-butene co-units are incorporated into the crystallites. Analyses of FTIR absorbances associated with crystalline 1-butene provide additional quantitative information on the morphological partitioning of the co-unit and give evidence to support that the incorporation of the comonomer into the crystalline regions is controlled by crystallization kinetics. The presence of the comonomer in the crystalline region affects the observed vibration of the most sensitive iPP 3/1 regularity bands associated with the evolution of crystallites, i.e. 841 cm?1 (12 isotactic units). The frequency of this band shifts toward higher values with increasing comonomer and with increasing undercooling, in support of an increasing concentration of entrapped crystalline 1-butene. The frequency shift is absent in copolymers with co-units that are excluded from the crystalline regions, such as the 1-octene comonomer.  相似文献   

2.
We have investigated the crystallized morphology formed at each temperature Tc (20 °C ≤ Tc ≤ 45 °C) in double crystalline poly(?-caprolactone)-block-polyethylene (PCL-b-PE) copolymers as a function of composition (or volume fraction of PE blocks ?PE) by employing small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) techniques. When PCL-b-PE with ?PE ≤ 0.58 was quenched from a microphase-separated melt into Tc, the crystallization of PE blocks occurred first to yield an alternating structure consisting of thin PE crystals and amorphous PE + PCL layers (PE lamellar morphology) followed by the crystallization of PCL blocks, where we can expect a competition between the stability of the PE lamellar morphology (depending on ?PE) and PCL crystallization (on Tc). Two different morphologies were formed in the system judging from a long period. That is, the PCL block crystallized within the existing PE lamellar morphology at lower Tc (<30 °C) to yield a double crystallized alternating structure while it crystallized by deforming or partially destroying the PE lamellar morphology at higher Tc (>35 °C) to result in a significant increase of the long period. However, the temperature at which the morphology changed was almost independent of ?PE. For PCL-b-PE with ?PE ≥ 0.73, on the other hand, the morphology after the crystallization of PE blocks was preserved at every Tc investigated.  相似文献   

3.
Jungki Kim  SonBinh T. Nguyen 《Polymer》2006,47(16):5799-5809
Styrene (S)/4-hydroxystyrene (HS) copolymers are synthesized by hydrolysis of S/4-acetoxystyrene copolymer precursors; two gradient copolymer precursors are made by semi-batch, nitroxide-mediated controlled radical polymerization, and a random copolymer precursor is prepared by conventional free radical polymerization. Conventional heat curves from differential scanning calorimetry indicate two glass transition temperatures (Tgs) and a broad Tg in well-annealed 59/41 mol% and 25/75 mol% S/HS gradient copolymers, respectively, both of which contain short S end-blocks. In contrast, a narrow Tg is observed in a 57/43 mol% random copolymer. Each S/HS copolymer is added at 5 wt% by solution mixing to an 80/20 wt% polystyrene (PS)/polycaprolactone (PCL) blend and tested for its ability to compatibilize the blend during melt processing; the hydroxyl groups on the HS units can form hydrogen bonds with the PCL ester groups. The S/HS random copolymer fails as a compatibilizer while both gradient copolymers are good compatibilizers. Relative to the blend without copolymer, the blend with 59/41 mol% S/HS gradient copolymer also exhibits a major reduction in initial dispersed-phase domain size and irregularly shaped domains, which are indicators of a sharply reduced interfacial tension. In contrast, the blend with 25/75 mol% S/HS gradient copolymer has an average PCL domain size comparable to the blend without copolymer and a broad domain size distribution. The presence of S/HS copolymers in the blend leads to reduced PCL crystallization and melting temperatures as well as reduced enthalpies of crystallization and melting, consistent with some solubilization of copolymer in the PCL domain interiors.  相似文献   

4.
The spherulite growth behavior and mechanism of l-lactide copolymers, poly(l-lactide-co-d-lactide) [P(LLA-DLA)], poly(l-lactide-co-glycolide) [P(LLA-GA)], and poly(l-lactide-co-ε-caprolactone) [P(LLA-CL)] have been studied using polarization optical microscopy in comparison with poly(l-lactide) (PLLA) having different molecular weights to elucidate the effects of incorporated comonomer units. The incorporation of comonomer units reduced the radius growth rate of spherulites (G) and increased the induction period of spherulite formation (ti), irrespective of the kind of comonomer unit. Such effects became remarkable with the content of comonomers. At a crystallization temperature (Tc) of 130 °C, the disturbance effects of comonomers on the spherulite growth decreased in the following order: d-lactide>glycolide>ε-caprolactone, when compared at the same comonomer unit or reciprocal of averaged l-lactyl unit sequence length (ll). The ti estimation indicated that the glycolide units have the lowest disturbance effects on the formation of spherulite (crystallite) nuclei. The PLLA having the number-average molecular weight (Mn) exceeding 3.1×104 g mol−1 showed the transition from regime II to regime III at Tc=120 °C, whereas PLLA with the lowest Mn of 9.2×103 g mol−1 crystallized solely in regime III kinetics and the copolymers excluding P(LLA-DLA) with 3% of d-lactide units crystallized solely according to regime II kinetics. The nucleation and front constant for regime II and III [Kg(II), Kg(III), G0(II), and G0(III), respectively] estimated with each (not with a fixed for high-molecular-weight PLLA) decreased with increasing the amount of defects per unit mass of the polymer for crystallization, i.e. with increasing the comonomer content and the density of terminal group through decreasing the molecular weight.  相似文献   

5.
We have synthesized poly(octamethylene terephthalate) (POT), poly(octamethylene 2,6-naphthalate) (PON), and poly(octamethylene terephthalate-co-octamethylene 2,6-naphthalate)s [P(OT-co-ON)s] with various comonomer composition by melt-polycondensation reaction and investigated their chain structures, crystalline structures, melting and cocrystallization behavior by using 1H NMR spectroscopy, wide angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC), respectively. It was observed that P(OT-co-ON)s exhibit clear melting and crystallization peaks in DSC thermograms and sharp diffraction peaks in WAXD patterns throughout the copolymer composition, resulting from the cocrystallization behavior of OT and ON units in copolymers. When the melting and crystallization temperatures of P(OT-co-ON)s are compared as a function of the copolymer composition, there exists an eutectic point at around 23 mol% ON, where the crystal transformation from POT-type to PON-type occurs. It was confirmed from WAXD patterns of the melt-crystallized samples that the crystal transformation from POT-type to PON α-type to PON β-type occurs with the increment of the comonomer ON content in copolymers, i.e., POT-type crystals for POT and P(OT-co-ON) with 11 mol% ON, PON α-type crystals for P(OT-co-ON)s with 23-48 mol% ON, and PON β-type crystals for PON and P(OT-co-ON)s with 62-87 mol% ON. Both DSC and WAXD results demonstrate the isodimorphic cocrystallization of P(OT-co-ON)s. Based on the Wendling-Suter model for cocrystallization thermodynamics, it was found that the average defect free energy for the inclusion of OT units into PON β-type crystals is much lower than the value of the incorporation of ON units into POT-type crystals.  相似文献   

6.
M. Soccio  N. Lotti  L. Finelli 《Polymer》2010,51(1):192-200
Poly(butylene/thiodiethylene naphthalate) copolymers (PBN-PTDEN) were synthesized in bulk according to the usual polycondensation procedure and examined by NMR, GPC, TGA, DSC and XRD techniques. At room temperature they appeared as semicrystalline materials; the copolymerization caused a lowering in the Tg value, a decrement of Tm and of the crystallization rate. Pure α- or β′-form was obtained at low and high TDEN unit content, respectively; crystalline form transition never occurred in the solid state, analogously to PBN. After cooling from the melt, the pure α-form was always evidenced in PBN-PTDEN10, whereas the pure β′ crystal phase develops in the copolymers containing 30 and 40 mol% TDEN units, independently on the cooling rate. In the case of PBN-PTDEN20 a pure α- or β′-form was obtained at low and high cooling rate, respectively.  相似文献   

7.
Copolyester was synthesized and characterized as having 94.4 mol% ethylene succinate units and 5.6 mol% trimethylene succinate units in a random sequence as revealed by NMR. Differential scanning calorimeter (DSC) was used to investigate the isothermal crystallization kinetics of this copolyester in the temperature range (Tc) from 30 to 80 °C. The melting behavior after isothermal crystallization was studied by using DSC and temperature modulated DSC (TMDSC) by varying the Tc, the heating rate and the crystallization time. DSC and TMDSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are primarily due to the melting of lamellar crystals with different stabilities. A small exothermic curve between the main melting peaks gives a direct evidence of recrystallization. As the Tc increases, the contribution of recrystallization gradually decreases and finally disappears. The Hoffman-Weeks linear plot gave an equilibrium melting temperature of 108.3 °C. The kinetic analysis of the spherulitic growth rates indicated that a regime II → III transition occurred at ∼65 °C.  相似文献   

8.
Zhichao Liang  Bo Zhu  Yoshio Inoue 《Polymer》2011,52(22):5204-5211
The isothermal crystallization of isomorphic Poly(hexamethylene adipate-co-butylene adipate) [P(HA-co-BA)], with the HA unit content ranged from 100 to 45 mol%, forming the Poly(hexamethylene adipate) [PHA] type crystal was investigated with DSC, FTIR and WAXD. The BA units were found adopting their all-trans conformation in the crystalline phase of PHA type crystal. The inclusion of the BA units into the PHA type crystal was highly preferred in the isothermal crystallization at 25 °C. The exclusion of the BA units from the crystalline phase of the PHA type crystal was enhanced by elevating the crystallization temperature (Tc), depending on the content of comonomer units. Increasing the HA unit content enhances the formation of the all-trans conformation of the BA units in the PHA type crystal. At low Tc, such an enhancement significantly helps in retarding the exclusion of the BA units from the PHA type crystalline lattice. On the other hand, at high Tc, the difficulty for forming the stable all-trans conformation of the BA units in cocrystal increased and hence the exclusion of the BA units from the cocrystal was accelerated. In conclusion, the all-trans conformation of the BA units can also play a critical role in the isomorphic crystallization of the P(HA-co-BA)s forming the PHA type crystal.  相似文献   

9.
Hui Tang  Xiao-Fang Chen 《Polymer》2007,48(14):4252-4263
Five series of binary copolymers, poly[2,5-di(ROOC)styrene-co-2,5-di(R′OOC)styrene]s (R = n-C3H7-, R′ = C2H5-, n-C4H9-, and n-C5H11-; R = n-C6H13-, R′ = n-C4H9-, and n-C5H11-), were synthesized via free radical polymerization. The random nature of the copolymers was expected on the basis of the assumed similar reactivities of the analogous monomers and proved by 13C NMR analysis. It was also implied by the smoothly varying glass transition temperatures and further supported by the monotonous variation in d spacings for the liquid crystalline copolymers, where both corresponding homopolymers are liquid crystals. Subtle difference of R and R′ was found to have significant impact on the mesomorphic properties of the copolymers. When the pair of the corresponding homopolymers has the same mesogenic structure, a difference of one carbon atom in the alkyl chain can be tolerated over the whole copolymer composition range; however, the liquid crystalline structure soon disappears with the incorporation of a co-unit of an homopolymer that is not liquid crystal. For the copolymers with alkyl chain length differing by two carbon atoms, the liquid crystalline structure is lost with the incorporation of relatively low co-unit content despite the pair of corresponding homopolymers having the same mesogenic structure.  相似文献   

10.
Kirt A. Page 《Polymer》2004,45(25):8425-8434
The influence of ionic comonomer units and ionic aggregation on the crystallization behavior and crystallite surface energies of poly(butylene terephthalate-co-5-sodiosulfoisophthalate) (PBTi) ionomers containing 3 and 5 mol% dimethyl-5-sodiosulfoisophthalate monomer units is compared to that of pure poly(butylene terephthalate). The rate of crystallization of the ionomers, as determined from an Avrami analysis, was shown to decrease with an increase in the ionic comonomer unit content. This behavior was attributed to the presence of non-crystallizable comonomer units and the reduced mobility of the crystallizable chain segments due to ionic aggregation in the PBT ionomers as evidenced by the broad peak centered about −9.5 ppm in the 23Na NMR spectrum. The surface free energies of the polymer crystallites were determined using the Avrami rate constants in a modified Laurizten-Hoffman method. The PBT ionomers showed a 35-70% increase in the product of the surface energies (σσe) over that observed for pure PBT. By assuming a constant lateral surface energy, this behavior was attributed to a 30-70% increase in the work associated with chain folding. Relative to crystallites formed in pure PBT, these data suggest that there is a more disordered crystalline fold surface in the ionomers due the perturbed development of crystallites in the presence of a strong electrostatic network.  相似文献   

11.
Ian L. Hosier  J.S. Lin 《Polymer》2004,45(10):3441-3455
Four sets of propylene based random copolymers with co-units of ethylene, 1-butene, 1-hexene and 1-octene, and a total defect content up to ∼9 mol% (including co-unit and other defects), were studied after rapid and isothermal crystallization. Etched film surfaces and ultramicrotomed plaques were imaged so as to enhance contrast and minimize catalyst and co-catalyst residues. While increasing concentration of structural irregularities breaks down spherulitic habits, the formation of the gamma polymorph has a profound effect on the lamellar morphology. Lamellae grown in the radial axis of the spherulite and branches hereon are replaced in γ-rich copolymers with a dense array of short lamellae transverse or tilted to the main structural growth axis. This is the expected orientation for γ iPP branching from α seeds. Spherulites are formed in copolymers with non-crystallizable units (1-hexene and 1-octene) up to ∼3 mol% total defect content and were observed up to ∼6 mol% in those with partially crystallizable comonomers (ethylene and 1-butene). However, lamellae were observed in all the copolymers analyzed, even in the most defective ones, highlighting the important role of the gamma polymorph in propagating lamellar crystallites in poly(propylenes) with a high concentration of defects. Long periods measured from AFM and SAXS are comparatively analyzed.  相似文献   

12.
New poly(methacrylate) copolymers containing 90 mol% of a promesogenic unit based on the 4-butoxybenzanilide, 4-cyanobiphenyl or 4-cyanoterphenyl cores and 10 mol% of a photosensitive push-pull substituted 4-(N-methylamino)-4′-nitrostilbene group have been prepared. All polymers are liquid crystalline and thermally stable with decomposition temperatures above 320 °C. The irradiation with linearly polarised light (either 325, 365 or 488 nm) results in the induction of a small optical anisotropy in the films due to an angular-selective photoreaction, whereas the absorbance perpendicular to the electric field vector of the incident light becomes larger compared to the absorbance parallel to it. In films of the copolymer containing 4-cyanobiphenyl and 4-(N-methylamino)-4′-nitrostilbene units, the anisotropy was significantly enhanced by annealing above Tg up to a dichroism D = 0.5. A thin film aligned by this procedure shows an anisotropic red emission with a ratio of 2.8 between emission intensities in the parallel and perpendicular directions due to the presence of oriented fluorescent stilbene units.  相似文献   

13.
Shurui Shang  R.A. Weiss 《Polymer》2009,50(14):3119-2771
The free-radical copolymerization and the properties of comb-like copolymers derived from renewable resources, itaconic anhydride (ITA) and stearyl methacrylate (SM), are described. The ITA-SM copolymers were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The melting point (Tm) of the side-chains and the crystallinity decreased with increasing ITA concentration. The crystalline side-chains suppressed molecular motion of the main chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > Tm. The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased.  相似文献   

14.
Thermosensitive phase separation of aqueous solutions of the random copolymers of N-isopropylacrylamide (iPA) and N,N-diethylacrylamide (dEA) (PiPA-dEA) and of iPA and N-isopropylmethacrylamide(iPMA) (PiPA-iPMA) with different compositions has been investigated by using calorimetry, turbidimetry and infrared spectroscopy. Though the phase transition temperature (Tp) of PiPA-iPMA is a linear function of its composition, a deviation from additivity is observed for that of PiPA-dEA, that is, it has a minimum value at iPA/dEA = 1 (mol/mol). IR spectrum at the amide II mode of the copolymer suggests that part of N-H groups of iPA units form a hydrogen bond with CO groups of dEA units at T > Tp as well as with those of the iPA units. Effects of methanol on Tp of these copolymers have also been studied.  相似文献   

15.
Poly(butylene terephthalate-co-thiodiethylene terephthalate) copolymers of various compositions were synthesized and characterized in terms of chemical structure and molecular weight. The thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. All the polymers under investigation show a good thermal stability. At room temperature they appear as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of melting temperature with respect to homopolymers. A pure crystalline phase has been evidenced at high content of butylene terephthalate or thiodiethylene terephthalate units and Baur's equation was found to describe well the Tm-composition data. Amorphous samples (containing 50-100 mol% of thiodiethylene terephthalate units) showed a monotonic decrease of Tg as the content of sulfur-containing units is increased, due to the presence of flexible C-S-C bonds in the polymeric chain. Finally, the Fox equation described well the Tg-composition data.  相似文献   

16.
C. Ruiz-Orta 《Polymer》2011,52(13):2856-2868
Two different types of regularity bands are identified in a real time FTIR crystallization of a series of random propylene 1-hexene copolymers. The first is akin to the bands observed in the homopolymer, those associated with 31 helices of isotactic sequences of different n length (n, number of monomer units). The second type corresponds to vibrational coupling of short sequences of the chain that include the 1-hexene comonomer. Among the latter are absorbances at 910 and 1025 cm−1 which are markers for the formation of a trigonal phase in these copolymers. They remain unchanged prior to and during crystallization in copolymers with the 1-hexene units rejected from the crystallites (<13 mol% 1-hexene) and increase in intensity when the comonomer is an integral part of the crystallites (>13 mol% 1-hexene). Analysis of the real time evolution of IR regularity bands during isothermal crystallization of these copolymers confirms the beginning of crystallization at a critical helical sequence length (n∗) of ∼12 isotactic units (841 cm−1), and enables details of the early and final stages of crystallization. In the homopolymer and copolymers, the intensity of regularity bands with n ≤ 10 is constant in the initial undercooled melt, and increases simultaneously with the appearance of helices with n ≥12, in support of a classical crystallization mechanism of nucleation and growth. Due to density fluctuations in the initial melt, the short helices eventually collapse in aggregates or precursors that spontaneously (within the experimental macroscopic time frame) extend to stable nuclei (n ≥ 10). Stable nuclei further extend and grow cooperatively dragging additional short sequences as inferred by the simultaneous temporal evolution of helices with n = 10 and greater. The intensity of the 998 cm−1 (n = 10) band prior to nucleation, correlates directly with the isotactic sequence length of the copolymer and is independent of the final structure that evolves, either monoclinic or trigonal. This feature infers a nucleation event driven preferentially by the initial steady-state content of short helices in iPP and iPP-based copolymers. The temporal evolution of the 841 cm−1 band is an excellent avenue to study the crystallization kinetics of copolymers, including those with very low crystallinities. Via FTIR, the mechanism of the formation of mesomorphic crystallites in copolymers with ∼10 mol% 1-hexene at low temperatures is contrasted with the formation of alpha crystallites at higher temperatures in the nucleation driven range. The intensity of the 841 cm−1 band (n = 12) at the end of the transformation correlates linearly with the degree of crystallinity obtained by WAXD.  相似文献   

17.
In continuation of our goal to determine the ability of CO2 to plasticize acrylonitrile (AN) copolymers and facilitate melt processing at temperatures below the onset of thermal degradation, a systematic study has been performed to determine the influence of AN content on CO2 absorption and subsequent viscosity reduction. Our previous report focused on the absorption of CO2 in a relatively thermally stable 65 mol% AN copolymer. In this study, the ability for CO2 to absorb in AN copolymers containing 85-98 mol% acrylonitrile was determined, and subsequent viscosity and equivalent processing temperature reductions were evaluated. Eighty five and 90 mol% acrylonitrile/methyl acrylate (AN/MA) copolymers were found to absorb up to 5.6 and 3.0 wt% CO2, corresponding to reductions of Tg of 37 and 27 °C, and subsequent viscosity reductions of 61 and 56%, respectively. CO2 absorption in these copolymers was found to occur immediately, in contrast to the time dependent absorption observed in the 65 mol% copolymer. An Arrhenius scaling analysis was used to determine the equivalent reductions in processing temperature resulting from the viscosity reductions, and reductions of up to 25 and 9 °C were observed for the 85 and 90 mol% AN copolymers. Based on the specific conditions used for absorption, no significant CO2 uptake was observed for AN copolymers containing greater than 90 mol% acrylonitrile. Higher temperatures than those used here may be required to absorb CO2 into AN copolymers containing greater than 90 mol% AN.  相似文献   

18.
Isothermal crystallization and subsequent melting behavior of two propylene/hexene‐1 copolymers and two propylene/octene‐1 copolymers prepared with metallocene catalyst were investigated. It is found that γ‐modification is predominant in all copolymers. The Avrami exponent shows a weak dependency on comonomer content and comonomer type. At higher crystallization temperatures (Tc) the crystallization rate constant changes more rapidly with Tc and the crystallization half‐time substantially increases. Double melting peaks were also observed at high Tc, which is attributed to the inhomogeneous distribution of comonomer units along the polymer chains and the existence of crystals with different lamellar thicknesses. The equilibrium melting temperatures (T) of the copolymers were obtained by Hoffman–Weeks extrapolation. It was found that the T decreases with increasing comonomer content, but are independent of comonomer type, implying that comonomer units are excluded from the crystal lattice. Dilation of the crystal lattice was also observed, which depends on crystallization, comonomer content, and comonomer type. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 240–247, 2005  相似文献   

19.
Bo Yin 《Polymer》2006,47(25):8237-8240
The enhanced crystallization of polycarbonate in the blend of liquid crystalline polymer/polycarbonate/(ethylene-methyl acrylate-glycidyl methacrylate) copolymer (LCP/PC/E-MA-GMA) was studied by wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The LCP/PC/E-MA-GMA 5/95/5 blends annealed at 200 °C, for 2, 4, 6, and 10 h, present an obvious crystalline structure corresponding to PC crystallization. The PC crystal obtained shows two melting temperature, Tm1 of about 214 °C and Tm2 of about 231 °C, with a total heat of fusion of 29 J/g (annealing time = 10 h). The preliminary results indicate that amorphous PC can be induced to crystallization by the synergistic action of LCP dispersed phase and reactive compatibilizer.  相似文献   

20.
Oxidative copolymerization of 8-aminoquinoline (AQ) and o-anisidine (AS) using ammonium persulfate as oxidant was studied under various polymerization conditions and fine and uniform copolymer particles of several micrometers, determined by laser particle size and atomic force microscopic analyses, were synthesized simply. The polymerization yield, molecular weight, solubility, electroconductivity, and thermostability of the copolymers were systematically studied by changing the comonomer ratio, polymerization temperature, monomer/oxidant ratio, and acidic medium. Single chain configuration of the copolymers with various AQ/AS ratios was simulated and well related to the intrinsic viscosity. The macromolecular structure of the resulting copolymers was wholly characterized by elementary analysis, IR, UV-vis, high-resolution 1H NMR, and solid-state high-resolution 13C NMR. The results show that the oxidative copolymerization of AQ and AS is exothermic. All copolymers are totally soluble in H2SO4, HCOOH, m-cresol but their solubility in other solvents depends significantly on the comonomer ratio, and also on the polymerization conditions. The oxidative polymer obtained is a real copolymer containing AQ and AS units rather than a mixture of two homopolymers. The AQ content calculated based on the 1H NMR spectra of the copolymers is slightly higher than feed AQ content when feed AQ content is lower than 70 mol%. However, the AQ content calculated based on the 13C NMR and elementary analyses is lower than the feed AQ content when the AQ feed content is higher than 50 mol%. A peculiar dependency of molecular weight and electroconductivity of the copolymers on the AQ/AS ratio was observed. The decomposition temperature of the copolymers rises with increasing AQ content. Therefore, the thermostability of the copolymers increases with increasing AQ content due to its high aromaticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号