首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electrospinning of the biodegradable polylactide (PLA) and its composites containing carbon nanotubes (CNTs) was studied in terms of solution concentrations and solvents effects as well as CNT loadings. The results reveal that the PLA fibers obtained from the solutions using the mixed solvents of chloroform/assistant solvent (v/v 3/1) show better morphologies than those from the solutions using chloroform as the single solvent. This is due to the synergistic effect by the improved conductivity and altered viscosity with addition of assistant solvent. Moreover, the surface structure of fibers depends on the volatility of assistant solvents strongly. Using volatile acrylonitrile or acetone as the assistant solvents, the columned fibers with porous surface structure are obtained; while the flat fibers with fluted surface are formed using nonvolatile dimethyl sulfoxide as the assistant solvents. As for electrospinning of the PLA/CNT composites, the morphology of obtained fibers is closely related to the dispersion of CNTs in the fibers. At low loading levels, the CNTs can be well embedded in the PLA matrix and oriented along the fiber axis, forming nanowire structure. At high loading levels, the CNTs are mainly dispersed as entangled bundles along the fiber axis, and as a result, the obtained fibers show tortuous or misshaped morphologies. Compared with that of the neat PLA fibers, the overall morphologies of the composite fibers are more or less degraded because the presence of some small CNT aggregates in the solutions easily leads to the formation of beaded fiber structure during electrospinning. The conductivity of the obtained composite fiber mats was further studied in terms of CNT loadings. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

2.
The development of various morphologies such as beads, beaded fibers, pure fibers and their scaling as a function of solution properties and processing variables in electrospinning is reported. Polyvinyl pyrrolidone (PVP), at various molecular weights and concentrations dissolved in a mixture of water and ethanol, was used to prepare different morphologies and sizes. The morphology of beads and fibers was predicted and measured based on an entanglement number diagram and rheological measurements. A constant-current electrospinning system was employed to control the processing variables. Scaling laws related to solution properties and processing variables (voltage, current and flow rate), and their effect on the fiber/bead diameter, were discussed. Viscosity (η), flow rate (Q), and current (I) were found to play significant roles in the control of morphology during electrospinning. Processing variables involved in electrospinning followed a power scaling that was in agreement with the model. The dependence of fiber diameter (df) on the Q/I for different molecular weights and concentrations also followed a power law, and the scaling varied between 0.11-0.29 for beaded fiber and 0.36-0.51 for pure fiber. In addition, the relationship between viscosity and fiber diameter followed scaling laws: df ∼ η0.98.  相似文献   

3.
A method is reported that involves the bulk polymerization of styrene monomer in the presence of multi-wall carbon nanotubes (MWCNTs) and polystyrene (PS) beads, for the preparation of MWCNT/PS conducting composites with a significantly lower (0.08 wt.% MWCNT) percolation threshold than previously reported. Thus, the conductivities of 7.62 × 10−5 and 1.48 × 10−3 S cm−1 were achieved in the MWCNT/PS composites through homogeneous dispersion of 0.08 and 0.26 wt.% CNTs, respectively in the in situ polymerized PS region by using 70 wt.% PS beads during the polymerization. The extent of dispersion and location of the MWCNTs in the PS matrix has been investigated with a scanning and transmission electron microscopy. The conductivity of the composites was increased with increasing wt.% of the PS beads at a constant CNT loading, indicating the formation of a more continuous network structure of the CNTs in PS matrix.  相似文献   

4.
We present an in-depth study of CNT growth on commercially-available woven alumina fibers, and achieve uniform growth of dense aligned CNTs on commercially-available cloths up to 5 × 10 cm in area. By systematically varying the catalyst concentration, catalyst pre-treatment time, and sample position within the tube furnace, we isolate key factors governing CNT morphology on fiber surfaces and classify these morphologies as related to the processing conditions. Synthesis employs a low-cost salt-based catalyst solution and atmospheric pressure thermal CVD, which are highly attractive approaches for commercial-scale processing. The catalyst solution concentration determines the uniformity and density of catalyst on the fibers, H2 exposure mediates formation of catalyst clusters, and thermal decomposition of the reactant mixture activates the catalyst particles to achieve uniform aligned growth. Under conditions for aligned CNT growth, uniform radially-aligned coatings are achieved with shorter CNT length, and these split into “mohawks” as the CNT length increases. Radially-aligned growth for 5 min adds a typical CNT mass fraction of 3.8% to the initial sample mass, and a uniform morphology exists throughout the weave. Composites prepared by standard layup techniques using these CNT “fuzzy” alumina fibers are attractive as integral armor layers having enhanced ballistic and impact performance, and serve as a model system for later implementation of this technology using carbon fibers.  相似文献   

5.
Jianfen Zheng  Junxing Li 《Polymer》2006,47(20):7095-7102
Polystyrene (PS) surfaces with various morphologies have been produced by electrospinning or electrospraying, such as beads with different sizes and shapes, bead-on-string structures with different aspect ratios of the beads and fibers with different diameters and shapes. Both the solution properties and the electrospinning conditions affected the PS surface morphology obtained. The results of water contact angle (CA) measurement indicated that the surface morphology could affect the wettability distinctively. It was found that CA values of PS surfaces comprised merely fibers were in the range of 140°-150°. The CA values of PS surfaces comprised bead-on-string structures were usually about 150°. However, the CA values of PS surfaces consisted of particles could reach up to 160°, which shows a superhydrophobic property. A bilayer fibers-on-beads surface was verified to be stable and superhydrophobic.  相似文献   

6.
The influence of carbon nanotubes (CNTs) addition on basic mechanical, thermal and electrical properties of the multiwall carbon nanotube (MWCNT) reinforced silicon nitride composites has been investigated. Silicon nitride based composites with different amounts (1 or 3 wt%) of carbon nanotubes have been prepared by hot isostatic pressing. The fracture toughness was measured by indentation fracture and indentation strength methods and the thermal shock resistance by indentation method. The hardness values decreased from 16.2 to 10.1 GPa and the fracture toughness slightly decreased by CNTs addition from 6.3 to 5.9 MPa m1/2. The addition of 1 wt% CNTs enhanced the thermal shock resistance of the composite, however by the increased CNTs addition to 3 wt% the thermal shock resistance decreased. The electrical conductivity was significantly improved by CNTs addition (2 S/m in 3% Si3N4/CNT nanocomposite).  相似文献   

7.
Polycarbonate/carbon nanotube (CNT) nanocomposites were generated using a supercritical carbon dioxide (scCO2) aided melt blending method, yielding nanocomposites with enhanced electrical properties and improved dispersion while maintaining the aspect ratio of the as-received CNTs. Baytubes® C 150 P CNTs were benignly deagglomerated with scCO2 resulting in 5 fold (5X), 10X and 15X decreases in bulk density from the as-received CNTs. This was followed by melt compounding with polycarbonate to generate the CNT nanocomposites. Electrical percolation thresholds were realized at CNT loading levels as low as 0.83 wt% for composites prepared with 15X CNT using the scCO2 aided melt blending method. By comparison, a concentration of 1.5 wt% was required without scCO2 processing. Optical microscopy, transmission electron microscopy, and rheology were used to investigate the dispersion and mechanical network of CNTs in the nanocomposites. The dispersion of CNTs generally improved with scCO2 processing compared to direct melt blending, but was significantly worse than that of twin screw melt compounded nanocomposites reported in the literature. A rheologically percolated network was observed near the electrical percolation of the nanocomposites. The importance of maintaining longer carbon nanotubes during nanocomposite processing rather than focusing on dispersion alone is highlighted in the current efforts.  相似文献   

8.
The reinforcement effect of carbon nanotubes (CNTs) has been examined as a function of their loading and aspect ratio in poly(vinyl alcohol) (PVA) based hybird fibers. Lignosulfonic acid sodium salt (LSA) was used to disperse CNTs to produce consistently high CNT loaded PVA-LSA-CNT hybrid fibers using an electrospinning process. The elastic modulus of individual fibers was measured using atomic force microscopy. The presence of CNTs significantly increased the average elastic modulus of PVA-LSA-CNT fibers compared to PVA-LSA fibers. The elastic modulus, however, exhibited no fiber diameter dependency. Transmission electron microscopy (TEM) was used to determine the loading and the aspect ratio of CNTs in each hybrid fiber. The CNT loading in PVA-LSA-CNT fibers varied widely due to non-uniform CNT dispersion and displayed no relationship with the elastic modulus. Our results also demonstrated that the average value of CNT aspect ratio significantly affected the elastic modulus of the hybrid fibers. Such a result was in agreement with theoretical prediction in which the stress transfer efficiency in a composite matrix is strongly dependent on the CNT aspect ratio.  相似文献   

9.
A method for calculating the energy of mixing carbon nanotubes (CNTs) with polymers is presented. The formation of the nanocomposite is analyzed in terms of a simple path in which the nanotubes are exfoliated from a bundle and dispersed in a distorted polymer with cylindrical cavities to accommodate the nanotubes. From this perspective, the energy of mixing is the difference between the energy required to exfoliate the nanotubes from a bundle and the energy needed to extract the nanotubes from the polymer matrix relative to the relaxed polymer without any nanotubes. These energy components are evaluated by performing molecular mechanics calculations on individual, localized models representing the polymer, nanotube bundles, and polymer/CNT agglomerates. This method is applied to polystyrene/CNT composites and the factors that determine their thermodynamic stability are identified. To a first approximation, the interaction energies (per unit surface area of the nanotubes) are independent of the lengths and chiral indices, but dependent on the diameters of the component nanotubes. By the application of this method, we show that the energy of mixing CNTs with PS is endothermic until the diameters of the component nanotubes exceed about 2.2 nm; at diameters greater than this value the energy of mixing becomes exothermic. This may explain why it is so difficult to obtain good dispersion of single-walled CNTs (SWCNTs) in PS, since they rarely grow to have diameters greater than about 1.4 nm. On the other hand, since the diameters of multi-walled CNTs typically exceed 10 nm, we would expect them to disperse much better than SWCNTs in polystyrene.  相似文献   

10.
Debundling and dispersion of carbon nanotubes (CNTs) are very important for preparation of polymer/CNT nanocomposites. In the present study, a self-prepared gemini surfactant, 6,6′-(butane-1,4-diylbis(oxy))bis(3-nonylbenzenesulfonic acid), is employed to achieve homogeneous and stable dispersion of multi-walled carbon nanotubes (MWNTs) in organic solvent and subsequent polystyrene (PS)/MWNT nanocomposite. Sedimentation, optical microscopy and transmission electron microscopy studies demonstrate that the gemini surfactant can greatly improve the dispersion and stabilization of MWNTs in toluene. Scanning electron microscopic images clearly confirm the homogenous dispersion of individual MWNTs in PS. In addition, desired enhanced electrical conductivity and thermal stability of the nanocomposite relative to those of the neat PS are obtained.  相似文献   

11.
Yijin Xu 《Polymer》2005,46(3):799-810
Polystyrene-carbon nanofiber (CNF) nanocomposites have been synthesized by a ‘bottom-up’ method through electrostatic assembly. First, a cationic polystyrene (PS) latex was synthesized by conventional emulsion polymerization. The latex was mixed with an aqueous suspension of oxidized CNF. PS-CNF nanocomposites were obtained by heterocoagulation due to the electrostatic interaction between cationic PS latex and anionic CNF. Thermal properties were characterized by DSC and TGA, while morphologies of the nanocomposites were studied by SEM. Electrical resistivity results showed that the percolation threshold in our PS-CNF nanocomposites was below 2 wt% (1 vol%). This low percolation threshold is related to the dispersion, and thus a superior network formation of CNF in PS matrix.  相似文献   

12.
The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(α-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacrylate), PαMSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 PαMSAN/PMMA and 15/85 PαMSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 PαMSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 PαMSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 PαMSAN/PMMA and 15/85 PαMSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 PαMSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state.  相似文献   

13.
Yi-Tao Liu  Wei Zhao  Xiong-Ying Ye 《Carbon》2009,47(7):1883-799
Microphase-separated styrene-butadiene-styrene (SBS) triblock copolymer was utilized as a template for the selective self-assembly of polystyrene (PS)-functionalized carbon nanotubes (CNTs) in the PS phase. It was also found that PS-functionalized CNTs could be accommodated in the PS phase of SBS regardless of the molecular weight of the PS ligand. This is different from the case for assembling nanoparticles or nanorods with a block copolymer, in which the ligand should be shorter than the corresponding block such that the nanoparticles or nanorods can be incorporated into that block. This phenomenon is explained based on the different chain morphologies of the ligands functionalizing the CNTs, nanoparticles and nanorods.  相似文献   

14.
Lei Li  Harold G. Craighead 《Polymer》2006,47(17):6208-6217
Nanocomposite fibers of nylon-6 and an organically modified montmorillonite (O-MMT), Cloisite-30B, were prepared by electrospinning. Dispersion and exfoliation of O-MMT in nylon-6 were achieved by melt-extrusion in a twin-screw extruder prior to dissolving in aqueous formic acid for electrospinning. The effects of O-MMT layers on the properties of the nylon-6 solution and electrospun nanocomposite fibers were investigated. Homogeneous, cylindrical nanocomposite fibers with diameters ranging from 70 to 140 nm could be prepared from the 15% composite solution. The O-MMT layers were well exfoliated inside the nanocomposite fibers and were oriented along the fiber direction. Both the degree of nylon-6 crystallinity and the crystallite sizes increased for the nanocomposite fibrous mats, most significantly for those composed of the smallest fibers electrospun from 15% solution. The mechanical properties of the electrospun fibrous mats and single fibers depended not only on the addition of O-MMT layers but also on the sizes of the fibers. Smaller fibers exhibited higher Young's modulus.  相似文献   

15.
Patterned carbon nanotube (CNT) arrays have been synthesized on patterned substrates created via pulsed laser deposition (PLD) of the precursor catalyst films with a mask. Arrays of CNTs in square and hexagonal patterns with tube lengths of 8 μm and 16 μm were created on silicon or quartz substrates, respectively. Using the method of laser cutting, as-grown CNT patterns were pruned by focused He-Ne laser beam. It is found that after pruning, CNTs tend to cluster together and form welded junctions. The comparison of field emission properties of CNTs before and after pruning shows that laser modification of CNT morphologies effectively enhanced the emission currents.  相似文献   

16.
Won Keun Son  Taek Seung Lee 《Polymer》2004,45(9):2959-2966
The effects of solution properties and polyelectrolyte on the electrospinning of poly(ethylene oxide) (PEO) solutions were investigated. Ultrafine PEO fibers without beads were electrospun from 3, 4, 7 and 7 wt% PEO solutions in chloroform, ethanol, (dimethylformamide) DMF and water, respectively. At these concentrations, the values of [η]C were ∼10 for all solutions. The average diameters of PEO fibers were ranged from 0.36 to 1.96 μm. The higher the dielectric constant of solvent was, the thinner PEO fiber was. The average diameters of electrospun PEO fibers from PEO/water solutions were decreased and their distributions were narrowed by adding 0.1 wt% poly(allylamine hydrochloride) (PAH) and poly(acrylic acid sodium salt) (PAA) due to the increased charge density in solutions. The addition of PAH and PAA lowered the minimum concentration for electrospinning of a PEO/water solution to 6 wt%.  相似文献   

17.
With the aim of the development of conductive and mechanically improved adhesives, carbon nanotubes (CNTs) were dispersed by melt mixing into a non-reactive polyolefine based hotmelt adhesive. The composite materials, containing 0.5 to 5.0 wt% multi-walled CNTs (MWNTs), showed electrical percolation at about 0.75 wt%. Investigations of the mechanical properties using tensile tests resulted in a significant enhancement of Young's modulus up to 372% and nearly doubling of tensile strength at 5.0 wt%. Even if the hotmelt material is highly elastic compared to typical thermoplastic matrices, the melt mixing resulted in suitable CNT dispersion. The melt viscosity increased with CNT loading, however near the observed electrical percolation threshold the processability was not notably reduced. Most important, next to conductivity at low CNT loadings, also a significant enhancement in the shear strength of bonded joints of AlMg3 up to values of 250% of the pure hotmelt could be obtained. The property profile can be tailored with CNT concentration, indicating the suitability of CNT addition into these hotmelt adhesives.  相似文献   

18.
The multi-walled carbon nanotube (CNT)-embedded activated carbon nanofibers (ACNF/CNT) and activated carbon nanofibers (ACNF) were prepared by stabilizing and activating the non-woven web of polyacrilonitrile (PAN) or PAN/CNT prepared by electrospinning. Both ACNF and ACNF/CNT were partially aligned along the winding direction of the drum winder. The average diameter of ACNF was 330 nm, while that of ACNF/CNT was lowered to 230 nm with rough surface. This was attributed to the CNT-added polymer solution in the electrospinning process providing finer fibers by increasing the electrical conductivity compared with the CNT-free one. The specific surface area and electrical conductivity of ACNF were 984 m2/g and 0.42 S/cm, respectively, while those of ACNF/CNT were 1170 m2/g and 0.98 S/cm, respectively. PPy was coated on the electrospun ACNF/CNT (PPy/ACNF/CNT) by in situ chemical polymerization in order to improve the electrochemical performance. The capacitances of the ACNF and PPy/ACNF electrodes were 141 and 261 F/g at 1 mA/cm2, respectively, whereas that of PPy/ACNF/CNT was 333 F/g. This improvement in capacitance was attributed to the following: (i) the preparation of aligned nano-sized ACNF/CNT by electrospinning and the addition of CNT and (ii) the formation of a good charge-transfer complex by the PPy coating on the surface of the aligned nano-sized ACNF/CNT. The former leads to a good morphology and superior properties, such as a higher surface area, the formation of mesopores and an increase in electrical conductivity. The latter offers a refined three-dimensional network due to the highly porous structure between ACNF/CNT and PPy.  相似文献   

19.
Lignin-based carbon fibers (CFs) decorated with carbon nanotubes (CNTs) were synthesized and their structure, thermal stability and wettability were systematically studied. The carbon fiber precursors were produced by electrospinning lignin/polyacrylonitrile solutions. CFs were obtained by pyrolyzing the precursors and CNTs were subsequently grown on the CFs to eventually achieve a CF–CNT hybrid structure. The processes of pyrolysis and CNT growth were conducted in a tube furnace using different conditions and the properties of the resultant products were studied and compared. The CF–CNT hybrid structure produced at 850 °C using a palladium catalyst showed the highest thermal stability, i.e., 98.3% residual weight at 950 °C. A mechanism for such superior thermal stability was postulated based on the results from X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and electron energy loss spectroscopy analyses. The dense CNT decoration was found to increase the hydrophobicity of the CFs.  相似文献   

20.
Ultra high molecular weight polyethylene (UHMWPE) is extensively used as a material in various high‐end applications with superior mechanical properties. Carbon nanotubes (CNTs) reinforced UHMWPE (CNT/UHMWPE) nanocomposite is a promising material that can compensate for the weak durability of UHMWPE. In this study, multiwalled carbon nanotubes were oxidized and silanized using acid mixture and 3‐aminopropyltriethoxysilane, respectively, to improve the interfacial strength between CNTs and UHMWPE. The CNT/UHMWPE nanocomposite was fabricated using these oxidized and silanized CNTs. The treatment effect of CNTs on the wear behavior of the CNT/UHMWPE nanocomposites was investigated through wear tests. The oxidization and silanization of CNTs were confirmed by infrared spectroscopy. Scanning electron microscope analysis showed that the silane‐treated CNT/UHMWPE nanocomposites showed better dispersion and interfacial adhesion between UHMWPE and CNTs becaue of the newly formed functional groups on the CNTs. The friction coefficient and wear rate of silanized CNT/UHMWPE nanocomposite were also found to be lower than those of raw UHMWPE and oxidized CNT/UHMWPE nanocomposite. CNTs were functionalized using oxidation and silanization methods to improve the interfacial adhesion between CNTs and UHMWPE. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号