首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Lorenzetti  N. Lotti  M. Vannini  C. Berti 《Polymer》2005,46(12):4041-4051
Poly(propylene terephthalate/2,6-naphthalate) random copolyesters (PPT-PPN) were synthesized and characterized from the molecular and thermal point of view. All the polymers showed a good thermal stability. The main effect of copolymerization was a lowering in the crystallinity and a decrease of Tm respect to homopolymers. WAXD measurements indicated that PPT-PPN copolymers are characterized by isodimorphic cocrystallization. The defect free energies, calculated on the basis of the inclusion model proposed by Wendling and Suter, indicated that the amount of PT units incorporated in the poly(propylene 2,6-naphthalate) (PPN) β crystals is higher than the amount of PN units which cocrystallizes in the poly(propylene terephthalate) (PPT) crystalline phase, probably due to the larger molar volume of PN units compared to PT ones. Amorphous samples showed a monotonic increment of Tg as the content of PN units is increased, due to the stiffening effect of naphthalene rings in the chain. Finally, the Fox equation described well the Tg-composition data.  相似文献   

2.
The melting and crystallization behavior of poly(trimethylene 2,6-naphthalate) (PTN) are investigated by using the conventional DSC, the temperature-modulated DSC (TMDSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy. It is observed that PTN has two polymorphs (α- and β-form) depending upon the crystallization temperature. The α-form crystals develop at the crystallization temperature below 140 °C while β-form crystals develop above 160 °C. Both α- and β-form crystals coexist in the samples crystallized isothermally at the temperature between 140 and 160 °C. When complex multiple melting peaks of PTN are analyzed using the conventional DSC, TMDSC and WAXD, it is found that those arise from the combined mechanism of the existence of different crystal structures, the dual lamellar population, and melting-recrystallization-remelting. The equilibrium melting temperatures of PTN α- and β-form crystals determined by the Hoffman-Weeks method are 197 and 223 °C, respectively. When the spherulitic growth kinetics is analyzed using the Lauritzen-Hoffmann theory of secondary crystallization, the transition temperature of melt crystallization between regime II and III for the β-form crystals is observed at 178 °C. Another transition is observed at 154 °C, where the crystal transformation from α- to β-form occurs.  相似文献   

3.
PEN/PET共混物结晶行为研究   总被引:1,自引:0,他引:1  
用差示扫描量热法(DSC)研究了不同共混比例PEN/PET共混物的熔体结晶行为,并进行了等温结晶动力学测定。结果表明:随着两种组分向中间比例(50/50)靠近,共混物的熔融温度越低,结晶速率也越慢。  相似文献   

4.
Blends prepared from poly(ethylene 2,6-naphthalate) (PEN) and poly(butylene 2,6-naphthalate) (PBN) show only partial miscibility judged from their glass transition temperatures. Two distinct mechanical behaviors are observed: brittle for the blends < 20 wt% of PBN, while ductile > 20 wt% of PBN. The experimental modulus and strength values of the blends are within the predicted values according to Kleiner and Paul models, respectively. This means that PEN/PBN blends are somewhat compatible based on their tensile properties. Especially for 20 wt% of PBN blend, the high modulus and strength are observed. The viscosity of the blend is high, which may imply a somewhat entangled morphology in the amorphous state.  相似文献   

5.
The crystallization behavior and morphology of poly(ethylene 2,6-naphthalte) (PEN) were investigated by means of differential scanning calorimetry (DSC), polarized optical microscopy (POM) and transmission electron microscopy (TEM). POM results revealed that PEN crystallized at 240 °C shows the coexistence of α and β-form spherulite morphology with different growth rates. In particular, when PEN crystallized at 250 °C, the morphology of spherulites showed a squeezed peanut shape. The Avrami exponents decreased from 3 to 2.8 above the crystallization temperature of 220 °C, indicating a decrease in growth dimension. Analysis from the secondary nucleation theory suggests that PEN crystallized at 240 °C has crystals with both regime I and regime II. In TEM observation, the ultra-thin PEN film crystallized at 200 °C showed the spherulitic texture with characteristic diffractions of α-form, while PEN crystallized at 240 °C generated an axialite structure with only β-form diffraction patterns. In addition, despite a long crystallization time of 24 h, amorphous regions were also observed in the same specimen. It was inferred that the initiation of PEN at 240 °C generates only β-form crystals from axialite structures.  相似文献   

6.
Amorphous films of poly(ethylene terephthalate)/poly(ethylene-2,6-naphthalate) (PET/PEN) blends with different blend ratios were uniaxially drawn by solid-state coextrusion and the structure development during solid state deformation was studied. As-prepared blends showed two Tgs. The lower Tg was ∼72 °C, independent of the blend ratio. In contrast, the higher Tg increased with increasing PEN content. Thus, the coextrusion was carried out around the higher Tg of the sample. At a given draw ratio of 5, which was close to the achievable maximum draw ratio, the tensile strength of the drawn samples from the initially amorphous state increased gradually with increasing PEN content. On the other hand, the tensile modulus was found to decrease initially, reaching a minimum at 40-60 wt% PEN, and then increased as the PEN content increased. The results indicate that we can get the drawn films with a moderate tensile modulus and a high tensile strength. The drawn samples from the blends containing 40-60 wt% of PEN showed a maximum elongation at break, and a maximum thermal shrinkage around 100 °C. Also, the degree of stress-induced crystallinity showed a broad minimum around the blend ratio of 50% of PEN. These morphological characteristics explained well the effects of blend ratio on the tensile modulus and strength of drawn PET/PEN blend films.  相似文献   

7.
Morphology in an extruded poly(ethylene terephthalate)/poly(ethylene-2,6-naphthalate) was investigated using time-resolved light scattering, optical microscope and small-angle X-ray scattering. During annealing at 280 °C, the domain structure via spinodal decomposition preceded, the transesterification followed, and then the transesterification between the two polyesters induced the dissolution of the liquid-liquid (L-L) phase separation, i.e. the homogenization. The annealed specimen for various time periods (ts) at 280 °C was subjected to a temperature-drop to 120 °C for the isothermal crystallization and then the effects of liquid phase morphology on crystallization was investigated. With ts, the Hν (cross-polarization) light scattering patterns exhibited the dramatic change from a four-leaf clover pattern with maximum intensity at azimuthal angle 45° (×-type scattering pattern) to a diffuse pattern of circular symmetry and then a four-leaf clover pattern with maximum intensity at azimuthal angles 0 and 90° (+-type scattering pattern). This suggests that the crystalline structure depends on the level of the block and/or random copolymer produced by the transesterification during annealing. The Hν scattering patterns reflected differences in the principle polarizability of the crystalline lamellae with respect to the spherulitic radius. On the other hand, the long period LB, an average distance between two adjacent crystalline lamellae, increased with ts at 280 °C. The dependence of LB on ts was explained by the change in the crystallization rate G.  相似文献   

8.
Multiple melting behavior of poly(butylene-2,6-naphthalate) (PBN) was studied with X-ray analysis and differential scanning calorimetry (DSC). Double endothermic peaks L and H attributed to the α-form crystal modification, a small peak attributed to the β-form crystal modification, and a new shoulder peak S at a lower temperature of peak H appeared in the DSC melting curves. Wide-angle X-ray diffraction patterns of the samples isothermally crystallized at 200 and 220 °C were obtained at a heating rate of 1 K min−1, successively. In this heating process, change of crystal structure and increase of quantity of the β-form crystallites could not be observed up to the final melting. With increasing temperature, the diffraction intensity decreased gradually and then increased distinctly before a steep decrease due to the final melting. The X-ray analysis clearly proved the melt-recrystallization during heating. The β-form crystal modification was formed during slow heating process in the high temperature region.  相似文献   

9.
Y.S. Hu  E. Baer 《Polymer》2006,47(7):2423-2433
This study examined the solid state structure and oxygen barrier properties of copolyesters based on smectic poly(hexamethylene 4,4′-bibenzoate) (PHBB) and non-liquid crystalline poly(hexamethylene isophthalate) (PHI). The isophthalate content was varied from 10 to 75 mol%. Differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), dynamic mechanical thermal analysis (DMTA), and atomic force microscopy (AFM) were employed to characterize the polymers. The strong ordering tendency of 4,4′-bibenzoate was demonstrated by the persistence of ordered PHBB structures in copolymers with large amounts of the kinked isophthalate comonomer. Copolymers with up to 50 mol% isophthalate gave evidence of liquid crystalline (LC) character in the precursor melt. Copolymers with up to 75 mol% isophthalate crystallized in the PHBB α-crystal form with only small perturbations of the unit cell. The copolymers provided insight into the low gas permeability of LC polymers. Changes in both solubility and diffusivity contributed to the lower oxygen permeability of the smectic glass compared to the amorphous glass. Smaller free volume hole size of the smectic glass gave rise to lower oxygen solubility and contributed to lower diffusivity. The extended chain conformation in the smectic glass, which reduced the fraction of glycol units in gauche conformations, was a second factor that contributed to lower diffusivity.  相似文献   

10.
Poly(ethylene 2,6-Naphthalate) films were irradiated in air by various light sources. By means of a spectral irradiator and a UV carbon arc, the most effective wavelength was determined as about 382 mμ. For a wavelength shorter than 375 mμ, the insolubilization reaction occurs only at the surface layer, while at 382 mμ, the chain scission and insolubilization occur at the same time throughout the depth. Some observations on the change of the fluorescence spectra upon UV irradiation are described.  相似文献   

11.
12.
Young Gyu Jeong  Won Ho Jo  Sang Cheol Lee   《Polymer》2002,43(26):7315-7323
The crystal structure of poly(pentamethylene 2,6-naphthalate) (PPN) was determined by using X-ray diffraction and molecular modeling. The unit cell of PPN was found to be triclinic ( space group) with dimensions of a=0.457 nm, b=0.635 nm, c=2.916 nm, =121.6°, β=90.4°, γ=87.6°, and the calculated crystal density was 1.311 g cm−3. The unit cell contains one polymer chain with two repeating units. In the unit cell, the PPN backbone takes gauche/gauche conformation in the middle part of each pentamethylene unit, and two naphthalene rings are in face-to-face arrangement.  相似文献   

13.
By using thermal and NMR analyses with supporting evidence from X-ray and scanning electron and optical microscopy, this study has attempted to clarify confusing issues of physical miscibility vs. chemical trans-reaction in blends of aryl polyesters upon heating. The study demonstrated that the blends of poly(pentylene terephthalate) (PPT) with poly(ethylene naphthalate) (PEN) were initially immiscible; however, with heating/annealing at high temperatures (300 °C) for long enough times, the original two phases merged into one single phase composed of two polyesters and some minor fractions of copolyesters. Upon extended heating, however, two original polyesters disappeared, and a random copolyester, coded as EN-co-PT, of various sequence lengths was produced as a result of extensive trans-reactions between PEN and PPT. The trans-reacted products from heated PEN/PPT (50/50) blend were characterized using 1H NMR. The sequence structures of the produced co-polyesters and intermediate products were determined by a triad analysis, which showed that the mean sequence lengths became shorter and the randomness increased with time of heating. X-ray analysis confirmed that the PEN/PPT (50/50) blend completely lost its crystallizability only when heated at 300 °C for time of 60 min or longer, indicating formation of fully random copolyesters.  相似文献   

14.
Initially amorphous and semicrystalline films of poly(ethylene 2,6-naphthalate) with different molecular weights were drawn by two-stage drawing, that is, coextrusion at low temperatures (25–160°C) followed by tensile drawing at high temperatures (200–245°C). Both films could be drawn up to a draw ratio of 8–10 by this method under controlled conditions. The tensile modulus and strength of drawn samples were greatly affected by the draw temperature for the first stage, predrawn morphology, and molecular weight. The remarkable effects of these variables on the tensile properties are closely related to the difference in the resultant amorphous chain orientation of the samples, reflecting the disentanglements and chain slippage during drawing, and the dissipation of chain orientation after processing.  相似文献   

15.
Morphology and oxygen permeability studies were carried out for blends of poly(ethylene terephthalate), PET, and poly(ethylene 2,6-naphthalate), PEN, with poly(ethylene-co-vinyl alcohol), EVOH. PET/EVOH blends are seen as a possible substitute for poly(vinylidene chloride)-coated PET packaging films. The effects of several processing parameters such as draw temperature and draw ratio on blend morphology and barrier properties suggest that the morphology of the EVOH phase dictates to a large extent the oxygen permeabilities of these blends. The relationships between morphology and oxygen permeability and explained are explained by consideration of two-phase conduction models. The model of Fricke is found to be a good predictor of the barrier properties of the PET/EVOH system. The oxygen permeability of PET was reduced by a factor of 4.2 with the addition of 20 wt% EVOH and that of PEN by a factor of 2.7 with the addition of 15 wt% EVOH. Water vapor permeabilities and mechanical properties of PET and PEN were only slightly affected by the addition of 15 wt% EVOH.  相似文献   

16.
The effect of transreactions on the phase behavior in poly(ethylene 2,6-naphthalate) and poly(ethylene isophthalate) blends was investigated by using differential scanning calorimetry. The transreactions between two polymers were confirmed by 1H nuclear magnetic resonance. At the beginning step of transreactions, the blend samples show two glass transitions. However, after transreactions occur to some extent (i.e., when the degree of randomness is >0.4), a single glass transition is observed. As the transreactions proceed, the composition difference between ethylene 2,6-naphthalate-rich and ethylene isophthalate-rich phases lessens. Additionally, the weight fraction of each phase decreases because of the increment of interfacial fraction with the lapse of reaction time. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1851–1858, 1999  相似文献   

17.
Crystallization of a series of liquid crystalline copolyesters prepared from p‐hydroxybenzoic acid (HBA), hydroquinone (HQ), terephthalic acid (TA), and poly(ethylene terephthalate) (PET) was investigated by using differential scanning calorimetry (DSC). It was found that these copolyesters are more crystalline than copolyesters prepared from PET and HBA. Insertion of HQ–TA disrupts longer rigid‐rod sequences formed by HBA and thus enhances molecular motion and increases the crystallization rate. The effects of additives on the crystallization of the copolyesters were also studied. Sodium benzoate (SB) and sodium acetate (SA) increase the crystallization rate of the copolyesters at low temperature, but not at high temperature. It is most likely that liquid crystalline copolyesters do not need nucleating agents, and small aggregates of local‐oriented rodlike segments in nematic phase could act as primary nuclei. Chain scission of the copolyesters caused by the reaction with the nucleating agents was proved by the determination of intrinsic viscosity and by the IR spectra. Diphenylketone (DPK) was shown to effectively promote molecular motion of chains, leading to an increase in the crystallization rate at low temperature, but it decreased the crystallization rate at high temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 497–503, 2001  相似文献   

18.
The phase behavior of the blends of poly(ethylene terephthalate) (PET) and poly(Resorcinol Phthalate-block-Carbonate) (RPC) and the blends of PET and poly(Bisphenol-A Carbonate) (PC) was investigated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). Blends of high molecular weight PET and RPC copolymer with 20 mol% resorcinol phthalate (RPC20) showed two glass transition temperatures in DMA and DSC but the cold crystallization rate of PET phase was substantially lowered as compared to neat PET, indicating partial miscibility at all compositions. The RPC20 with Mw = 31,500 g/mol formed miscible blends with PET when PET has weight-average molecular weight <9500 g/mol. The Flory-Huggins interaction parameter between PET and RPC20 was calculated to be 0.029 ± 0.003 by using the Flory-Huggins equation at critical composition and molecular weight. PC with Mw = 30,000 g/mol formed miscible blends with PET only when PET had molecular weight <2800 g/mol, indicating PC/PET blends were much less miscible than RPC20/PET blends. Group contribution methods agreed well with the experimental results obtained both in the present study and a previous study [1], predicting that the addition of a resorcinol phthalate block to a PC backbone should increase the miscibility of PC and PET.  相似文献   

19.
A series of poly(hexamethylene terephthalate-co-hexamethylene 2,6-naphthalate) (P(HT-co-HN)) random copolymers were synthesized by melt polycondensation and characterized using 1H NMR spectroscopy and viscometry. Their cocrystallization behavior was investigated using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) method. Even though the P(HT-co-HN) copolymers synthesized are statistically random copolymers, they show a clear melting and a crystallization peak in DSC thermograms over the entire range of copolymer composition and have a minimum melting temperature in the plot of melting temperature versus copolymer composition. WAXD patterns of all the copolymer samples show sharp diffraction peaks and are largely divided into two groups, i.e. PHT type and PHN type crystals. In addition, WAXD patterns of the PHN type crystals are subdivided into two types of PHN α and PHN β according to the copolymer composition. These facts indicate that the P(HT-co-HN) copolymers show isodimorphic cocrystallization. The composition at which the crystal transition between PHT type and PHN type occurs is equivalent to the eutectic composition (22 mol% HN content) for the melting temperature. When the defect free energies were calculated by using the equilibrium inclusion model proposed by Wendling and Suter, the defect free energies in the case of incorporation of HT units in the PHN α and β crystals were higher than the case of incorporation of HN units in the PHT crystal lattice.  相似文献   

20.
Copolyesters containing poly(ethylene terephthalate) and poly(hexamethylene terephthalate) (PHT) were prepared by a melt condensation reaction. The copolymers were characterised by infrared spectroscopy and intrinsic viscosity measurements. The density of the copolyesters decreased with increasing percentage of PHT segments in the backbone. Glass transition temperatures (Tg). melting points (Tm) and crystallisation temperatures (Tc) were determined by differential scanning calorimetry. An increase in the percentage of PHT resulted in decrease in Tg, Tm and Tc. The as-prepared copolyesters were crystalline in nature and no exotherm indicative of cold crystallisation was observed. The relative thermal stability of the polymers was evaluated by dynamic thermogravimetry in a nitrogen atmosphere. An increase in percentage of PHT resulted in a decrease in initial decomposition temperature. The rate of crystallisation of the copolymers was studied by small angle light scattering. An increase in percentage of PHT resulted in an increase in the rate of crystallisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号