首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qian Ma 《Polymer》2011,52(14):3190-3200
We investigate the interaction of the polymer matrix and filler in electrospun nanofibers using advanced thermal analysis methods. In particular, we study the ability of silicon dioxide nanoparticles to affect the phase structure of poly(ethylene terephthalate), PET. SiO2 nanoparticles (either unmodified or modified with silane) ranging from 0 to 2.0 wt% in PET were electrospun from hexafluoro-2-propanol solutions. The morphologies of both the electrospun (ES) nanofibers and the SiO2 powders were observed by scanning and transmission electron microscopy, while the amorphous or crystalline nature of the fibers was determined by real-time wide-angle X-ray scattering. The fractions of the crystal, mobile amorphous, and rigid amorphous phases of the non-woven, nanofibrous composite mats were quantified by using heat capacity measurements. The amount of the immobilized polymer layer, the rigid amorphous fraction, was obtained from the specific reversing heat capacity for both as-spun amorphous fibers and isothermally crystallized fibers. Existence of the rigid amorphous phase in the absence of crystallinity was verified in nanocomposite fibers, and two origins for confinement of the rigid amorphous fraction are proposed. Thermal analysis of electrospun fibers, including quasi-isothermal methods, provides new insights to quantitatively characterize the polymer matrix phase structure and thermal transitions, such as devitrification of the rigid amorphous fraction.  相似文献   

2.
The effects of multi-wall carbon nanotubes (MWCNTs) and poly(ethylene oxide) (PEO) on the structure formation, morphology, crystallization behavior and mechanical property of electrospun poly (l-lactic acid) (PLLA) nanofiber mats were investigated by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and mechanical test. If incorporate hard filler, MWCNTs into electrospun PLLA nanofiber, the crystallinity, chain orientation, and crystallization behaviors were almost not influenced by the MWCNTs content owing to the MWCNTs mainly acted as impeding the crystal growth and chain diffusion. If incorporate small content of soft and miscible component, PEO (10 wt%) into the electrospun PLLA and PLLA/MWCNTs nanofibers, the crystallinity and crystallization rate of PLLA in nanofibers were obviously enhanced. The synergistic effect of PEO and MWCNTs in PLLA nanofibers was observed during melt-crystallization behaviors of PLLA/MWCNTs fibers. Based on those results, we found that the chain mobility is an important factor to influence the structure formation and crystallization behaviors in the electrospun nanofibers. Our results indicated that the structure and properties of electrospun nanofibers could be optimized by compounding with hard inorganic filler and soft polymer components.  相似文献   

3.
J. LinS. Shenogin  S. Nazarenko 《Polymer》2002,43(17):4733-4743
The existence of rigid amorphous fraction (RAF) in semicrystalline poly(ethylene terephthalate) (PET) is associated with the lamellar stack crystalline morphology of this polymer, the regions where several crystalline lamellas are separated by very thin (20-40 Å) amorphous layers. In contrast, regular or mobile amorphous fraction is associated with much thicker interstack regions. The oxygen transport properties of PET isothermally crystallized from the melt (melt-crystallization) or quenched to the glassy state and then isothermally crystallized by heating above Tg (cold-crystallization) were examined at 25 °C. Explanation of unexpectedly high solubility of crystalline PET was attributed to the formation of RAF, which in comparison with mobile amorphous phase is constrained and vitrifies at much higher than Tg temperature thus developing an additional excess-hole free volume upon cooling. Measurements of crystallinity and jump in the heat capacity at Tg were used to determine the amount of mobile and rigid amorphous fractions. Overall oxygen solubility was associated with the solubility of mobile and rigid amorphous fractions. The oxygen solubility of the RAF was determined and related to the specific volume of this fraction. The specific volume of the RAF showed a direct correlation with the crystallization temperature. It was shown that upon crystallization from either melt or glassy state, the constrained between crystalline lamellas PET chains consisting of the RAF, vitrify at the crystallization temperature and resemble the glassy behavior despite high temperature. When cooled to room temperature, the RAF preserves a memory about the melt state of polymer, which is uniquely defined by the crystallization temperature.  相似文献   

4.
Zhiqiang Su  Jingfeng Li  Qing Li  Tongyang Ni  Gang Wei 《Carbon》2012,50(15):5605-5617
An improved electrospinning technique was used to produce poly(ethylene oxide) (PEO) and PEO-multi-walled carbon nanotube (MWCNT) hybrid nanofibers. By this technique, both the orientation of MWCNTs in the electrospun PEO nanofibers and the orientation of electrospun PEO–MWCNT hybrid nanofibers can be controlled. The morphologies of the as-spun PEO–MWCNT hybrid nanofibers and the dispersion and orientation of MWCNTs in the fiber matrix were observed by scanning and transmission electron microscopy. The effect of electrospinning process and the incorporation of MWCNTs on the chain conformation and semicrystalline framework of PEO were examined by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and differential scanning calorimetry, and compared with pure PEO and PEO–MWCNT films prepared by casting. Finally, to investigate how the fiber assemblies affect the mechanical and electrical properties of the hybrid materials, tensile testing and impedance analysis were performed on randomly oriented, uniaxially and biaxially oriented PEO–MWCNT hybrid nanofiber mats. The results indicated that both the uniaxially and biaxially oriented assembled hybrid materials have better tensile strength, modulus, and electrical conductivity compared with random nanofibers.  相似文献   

5.
The role of lactic acid (LA) on the polymer crystallization chain conformation and the surface modification of the electrospun nylon-6 fibers were examined. The effect of different amounts of LA on the polymer crystallization chain conformation of nylon-6 mat was evaluated using XRD, FT-IR and Raman spectroscopy whereas the surface modification of the electrospun mats was examined by FE-SEM, contact angle and mechanical properties measurement. It was found that the transition of meta-stable γ-form into the thermodynamically stable α-form was achieved by increasing the amounts of LA in the blend mixture. The adhesive property of LA was found to be responsible for the transformation from non-bonded to the point-bonded structure of nanofibers in the electrospun nylon-6 mat. The resultant LA/nylon-6 hybrid mat with improved hydrophilicity and mechanical properties may be a potential candidate for tissue scaffold.  相似文献   

6.
Multi‐walled carbon nanotube (MWCNT)/Poly(ethylene terephthalate) (PET) nanowebs were obtained by electrospinning. For uniform dispersion of MWCNTs in PET solution, MWCNTs were functionalized by acid treatment. Introduction of carboxyl groups onto the surface of MWCNTs was examined by Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) analysis. MWCNTs were added into 22 wt % PET solution in the ratio of 1, 2, 3 wt % to PET. The morphology of MWCNT/PET nanoweb was observed using field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM). The nanofiber diameter decreased with increasing MWCNT concentration. The distribution of the nanofiber diameters showed a bi‐modal shape when MWCNTs were added. Thermal and tensile properties of electrospun MWCNT/PET nanowebs were examined using a differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA) and etc. Tensile strength, tensile modulus, thermal stability, and the degree of crystallinity increased with increasing MWCNT concentration. In contrast, elongation at break and cold crystallization temperature showed a contrary tendency. Electric conductivities of the MWCNT/PET nanowebs were in the electrostatic dissipation range. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Qian Ma  Peggy Cebe 《Polymer》2011,52(20):4562-4570
The nanoscale phase behavior of a semicrystalline polymer is important for mechanical, thermal, optical and other macroscopic properties and can be analyzed well by thermal methods. Using quasi-isothermal (QI) heat capacity measurements, we investigate the formation behavior of the crystalline, mobile amorphous, and rigid amorphous fractions in poly(trimethylene terephthalate), PTT. The crystal and rigid amorphous phases comprise the total solid fraction in PTT at temperatures above Tg, the glass transition temperature of the mobile amorphous fraction. PTT was quasi-isothermally cooled step-wise from the melt which causes its crystalline fraction to be fixed below 451 K. Between the high temperature fulfillment of the Tg step and 451 K, the temperature dependent rigid amorphous fraction (RAF) is completely determined. For PTT, most of the RAF vitrifies between 451 K and Tg step by step during QI cooling after the crystals have formed. The constraints imposed by the crystal surfaces reduce the mobility of the highly entangled polymer chains. We suggest the vitrification of RAF proceeds outward away from the lamellar surfaces in a step by step manner during QI cooling. Upon reheating, devitrification of RAF occurs at a temperature above its previous vitrification temperature, due to the effects of densification brought by physical aging during the long period of quasi-isothermal treatment. Finally, we consider recent concepts related to jamming, which have been suggested to apply to filled polymer systems, and may also be applicable in describing constraints exerted by crystal lamellae upon the RAF.  相似文献   

8.
Poly(ethylene terephthalate) (PET) nanocomposites reinforced with multiwall carbon nanotubes (MWCNTs) were prepared through melt compounding in a twin‐screw extruder. The presence of MWCNTs, which acted as good nucleating agents, enhanced the crystallization of PET through heterogeneous nucleation. The incorporation of a small quantity of MWCNTs improved the thermal stability of the PET/MWCNT nanocomposites. The mechanical properties of the PET/MWCNT nanocomposites increased with even a small quantity of MWCNTs. There was a significant dependence of the rheological properties of the PET/MWCNT nanocomposites on the MWCNT content. The MWCNT loading increased the shear‐thinning nature of the polymer‐nanocomposite melt. The storage modulus and loss modulus of the PET/MWCNT nanocomposites increased with increasing frequency, and this increment effect was more pronounced at lower frequencies. At higher MWCNT contents, the dominant nanotube–nanotube interactions led to the formation of interconnected or networklike structures of MWCNTs in the PET/MWCNT nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1450–1457, 2007  相似文献   

9.
Poly(ethylene terephthalate) (PET)/SiO2 composite micro/nanofibers were successfully prepared by a laser melt-electrospinning system. The fibers with diameter ranging from 500 nm to 7 μm were obtained. The effect of laser current and applied voltage on the fibers morphologies was investigated by scanning electron microscopy (SEM), and the results showed that the relationship of process parameters and fibers diameter was complicated. The EDS analysis confirmed the presence of SiO2 in the PET fibers matrix. The crystallization behavior of the electrospun PET/SiO2 micro/nanofibers was investigated using X-ray diffraction (XRD) analysis and differential scanning calorimetry (DSC), and it was found that the as-electrospun fibers exhibited an amorphous phase. After heat-treatment at 120 and 160°C for 1 h, respectively, the fibers showed a high crystallinity. The thermal properties of fibers were studied using thermogravimetry-differential thermal analysis (TG–DTA), and showed the electrospun PET/SiO2 composite fibers was not effective difference of thermostability compared with PET fibers when used for fibers materials. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The FTIR method was used to study the melting behavior of poly(ethylene 2, 6-naphthalene-dicarboxylate) (PEN) samples of different thermal history of crystallization. With subtraction of the spectra of PEN samples of different crystallinities and amorphous PEN, the spectra of crystalline trans conformers, amorphous trans conformers, and amorphous gauche conformers were obtained. By following the changes in intensity of various gauche and crystalline bands during heating, the phenomenon of multiple melting endothermic peaks was shown to be due to the melting of imperfect crystalline conformation formed during crystallization. For two-step annealed samples, the crystalline conformational defects change into a more perfect one during annealing at higher temperatures. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
G.-M. Kim  G.H. Michler 《Polymer》2005,46(18):7346-7351
Mechanical deformation processes of electrospun composite fibers based on polycarbonate with multiwalled carbon nanotubes (MWCNTs) were investigated by in situ tensile tests under transmission electron microscope (TEM) depending on morphology. Using chloroform as solvent and optimizing process conditions, uniform nanoporous composite fibers were generated by electrospinning process. TEM images indicate that the MWCNTs were embedded in the fibers as individual elements, highly aligned parallel to one another along the fiber axis, which makes the mechanical load transfer from the polymer matrix to the MWCNT more favorable. Due to the slippage of individual MWCNTs within the fibers the strain at break of composite fibers is significantly enhanced. In addition, the nanopores on the fiber surface provide the effective sites for stress concentration for the plastic deformation to form nanonecking of fibers under tensile load. Combination of these unique features makes the electrospun composite fibers extremely strong and tough. The results from present work may provide a feasible consideration of such electrospun composite fibers for use as the reinforcing elements in a polymer based composite of a new kind.  相似文献   

12.
Poly(ether ether ketone) (PEEK)–multiwall carbon nanotube (MWCNT) composites were fabricated via injection moulding and subsequently characterized by means of microstructural, morphological, thermal and mechanical investigations. Scanning electron microscopy observations demonstrated a uniform distribution of MWCNTs within the matrix, while tensile tests revealed an unexpected high strain at rupture (up to 140%), despite the insertion of MWCNTs ensuring an increase of modulus and strength. Differential scanning calorimetry showed that MWCNT addition did not cause any significant increase in crystallinity of PEEK, and therefore it was concluded that the nanotubes acted as a confinement of polymer chains, hindering chain mobility. X‐ray diffraction showed the typical PEEK and MWCNT peaks, without evidencing the presence of any different phase. The strain at fracture of samples tested after annealing returned to values comparable with those of neat PEEK. © 2017 Society of Chemical Industry  相似文献   

13.
Pure and Al(OH)3-containing PET films were prepared, quenched, and subsequently annealed under identical conditions. The level of crystallinity of the films was determined by three methods: density measurements, X-ray crystallinity determination, and measurements by IR of the relative concentration of trans ? O? C? C? O? conformation in the polymer. For pure PET it was found that the percentage crystallinity measured in annealed samples by X-ray and IR is about the same. The density measurements agree with these techniques only when the amorphous density is taken as 1.348 g/cm3. In the case of quenched pure PET, a 7% correction to the concentration of trans conformation must be introduced (in agreement with recent literature) to fit the IR results to the X-ray and density data. Annealed PET containing Al(OH)3 crystallizes to about the same level as annealed pure PET. The agreement between X-ray and IR data is reasonably good. In the quenched PET/Al(OH)3 there exists a higher level of trans conformation (enhanced order), probably resulting from adsorption of relatively extended PET chain segments on the surface of the hydroxide particles. These extended units may possibly serve as nucleation sites for PET crystallization upon cooling from the melt.  相似文献   

14.
It is well known that crystallization can be induced in amorphous poly(ethylene terephthalate) (PET) by orientation below the isotropic crystallization temperature. The magnitude of the strain necessary for crystallization varies inversely with molecular weight because of relaxation. However, lower molecular weight PET might be expected to, crystallize at a lower extent of molecular orientation, since the crystallization rate also varies inversely with molecular weight. Chain conformations were measured during low temperature drawing of PET of various molecular weights. The molecular configuration associated with strain induced crystallization was found to be independent of chain length. The onset of orientational crystallization was associated with a particular conformation, and this critical trans/gauche ratio was equivalent for PETs of various molecular weights. The drawing behavior is thus in accord with theory concerning the transition of flexible chain polymes from isotropy to an ordered state. This result is congruent with previous studies suggesting the presence of extended chain crystallinity in amorphous PET after low temperature drawing.  相似文献   

15.
The effect of different amounts of ethylene co-units in the butene-1 chain, on the fold-surface structure of crystals of isotactic polybutene-1, has been probed by analysis of the rigid amorphous fraction (RAF). The exclusion of ethylene co-units from crystallization in random butene-1/ethylene copolymers and their accumulation at the crystal basal planes leads to a distinct increase of the RAF with increasing concentration of co-units. A specific RAF was determined by normalization of the RAF to the crystal fraction. While in the butene-1 homopolymer a specific RAF of 20–30% is detected, it increases to more than 100% in copolymers with 5–10 mol% of ethylene co-units, being in accordance with the previously observed increase of the free energy of the crystal fold-surface due to copolymerization. It has also been shown that the specific RAF increases with decreasing temperature of crystallization, due to formation of a fold-surface of lower perfection, containing an increased number of chain segments traversing the crystalline-amorphous interface.  相似文献   

16.
The present work was aimed to investigate the individual and hybrid reinforcement effect of multiscale fillers [glass fibers (GF)/multiwalled carbon nanotubes (MWCNTs)] in polypropylene (PP) matrix. The MWCNT content in the hybrid composites was varied from 0.5 to 5 wt%, and glass fiber fraction was fixed as 20 wt%. The morphology of nano and hybrid composite revealed reasonable dispersion of MWCNTs and glass fibers in the matrix. At a MWCNT content of 3 wt%, the optimum tensile properties for the hybrid composites were achieved and beyond which it declined due to agglomeration effects as revealed by transmission electron microscopy. A comparative study of the experimental and predicted values of moduli of nano, micro, and hybrid composites using various micromechanical models was conducted. The simultaneous incorporation of MWCNTs and glass fibers in PP restricted the mobility of polymer chains as indicated by the increase in storage modulus and rise in glass transition temperature obtained by dynamic mechanical analysis. The differential scanning calorimetry studies indicated that the inclusion of 2 wt% of MWCNTs increased the crystallinity of PP from 58.2 to 69.1% in hybrid composites. The Avrami and Mo models were used to explore nonisothermal crystallization kinetics, and Mo model was in close agreement with the experimental results. The sorption behavior of the composites revealed that the formation of immobilized regions developed by the simultaneous inclusion of micro and nano fillers delayed the transport of the solvent. J. VINYL ADDIT. TECHNOL., 25:E94–E107, 2019. © 2019 Society of Plastics Engineers  相似文献   

17.
Structure and properties of commercially available fully oriented thermoplastic and thermotropic polyester fibers have been investigated using optical birefringence, infrared spectroscopy, wide‐angle X‐ray diffraction and tensile testing methods. The effect of the replacement of p‐phenylene ring in poly(ethylene terephthalate) (PET) with stiffer and bulkier naphthalene ring in Poly(ethylene 2,6‐naphthalate) (PEN) structure to result in an enhanced birefringence and tensile modulus values is shown. There exists a similar case with the replacement of linear flexible ethylene units in PET and PEN fibers with fully aromatic rigid rings in thermotropic polyesters. Infrared spectroscopy is used in the determination of crystallinity values through the estimation of trans conformer contents in the crystalline phase. The analysis of results obtained from infrared spectroscopy data of highly oriented PET and PEN fibers suggests that trans conformers in the crystalline phase are more highly oriented than gauche conformers in the amorphous phase. Analysis of X‐ray diffraction traces and infrared spectra shows the presence of polymorphic structure consisting of α‐ and β‐phase structures in the fully oriented PEN fiber. The results suggest that the trans conformers in the β‐phase is more highly oriented than the α‐phase. X‐ray analysis of Vectran® MK fiber suggests a lateral organization arising from high temperature modification of poly(p‐oxybenzoate) structure, whereas the structure of Vectran® HS fiber contains regions adopting lateral chain packing similar to the room temperature modification of poly(p‐oxybenzoate). Both fibers are shown by X‐ray diffraction and infrared analyses to consist of predominantly oriented noncrystalline (63–64%) structure together with smaller proportion of oriented crystalline (22–24%) and unoriented noncrystalline (12–15%) structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 142–160, 2006  相似文献   

18.
《Polymer Composites》2017,38(6):1103-1111
The localization of multi‐walled carbon nanotubes (MWCNTs) in immiscible polymer blends composed of polycarbonate (PC) and poly(ethylene terephthalate) (PET) is studied. Although partial miscibility is confirmed for the blend, presumably owing to the transesterification reaction, the MWCNT addition is found to have no influence on the miscibility. Moreover, morphological investigation and solvent extraction experiments reveal that MWCNTs are preferentially localized in PET phase. Thermal behavior demonstrates that MWCNTs act as an effective nucleating agent for PET, leading to the increment in crystallization temperature and crystallinity of PET. Tensile properties of PC/PET blends, i.e., Young's modulus, yield strength, and ultimate strength, are significantly improved by the addition of MWCNTs. POLYM. COMPOS., 38:1103–1111, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Antimicrobial polyvinylidene fluoride (PVDF) membrane modified by dodecyltrimethyl ammonium bromide (DTAB) has been electrospun using simple one‐step technology, where the modifying agent DTAB is dissolved in spinning solution. X‐ray photoelectron spectroscopy and electrokinetic analysis confirm reliably the presence of DTAB on the nanofibers surfaces; electrokinetic analysis shows the changes of zeta potential due to modification by DTAB. X‐ray diffraction shows that electrospinning converts the part of α phase (≈40%) present in PVDF powder into β phase with all trans (TTT) zigzag chains conformation in PVDF electrospun membrane. Surface modification does not affect the phase composition of PVDF nanofibers, just only leads to lower crystallinity (smaller size of crystallites) in PVDF nanofibers. DTAB causes the curling of fibers and their aggregation, what completely changed the membrane structure. DTAB‐modified membrane exhibits antibacterial properties against Staphylococcus aureus subsp. Aureus. Concentration of 0.5 wt% DTAB in spinning solution causes partial inhibition of bacterial growth only, while 1.0 wt% concentration leads to complete inhibition.  相似文献   

20.
In this study, initially high molecular weight poly(azo-pyridine-benzophenone-imide) (PAPBI) has been fabricated using facile approach. Uniformly aligned electrospun PAPBI and PAPBI/multi-walled carbon nanotube (MWCNT) nanofibers were then produced via electrospinning of desired solutions. Self-reinforcement technique was used to fabricate PAPBI-based nanofiber reinforced films. Uniform dispersion, orientation and adhesion between carbon nanotubes and polymer improved the physical properties of resulting nanocomposites. Fourier transform infrared spectroscopy was used to identify the structures of polymer and self-reinforced nanocomposite films. Scanning and transmission electron microscopy showed that the electrospun PAPBI/MWCNT nanofibers were uniformly aligned and free of defects. Moreover, polyimide matrix was evenly coated on the surface of electrospun nanofibers, thus, preventing the fibers from bundling together. Samples of 1–3 wt% of as-prepared electrospun nanofibers were self-reinforced to enhance the tensile strength of the films. Films of 3 wt% PAPBI/MWCNT nanofiber-based nanocomposite showed higher value in tensile strength (417 MPa) relative to 3 wt% PAPBI nanofibers (361 MPa) reinforced film. Tensile modulus of the PAPBI/MWCNT system was also significantly improved (19.9–22.1 GPa) compared with PAPBI system (13.9–16.2 GPa). Thermal stability of PAPBI/MWCNT nanofibers reinforced polyimide was also superior having 10 % gravimetric loss at 600–634 °C and glass transition temperature 272–292 °C relative to the neat polymer (T 10 545 °C, T g 262 °C) and PAPBI nanofiber-based system (T 10 559–578 °C, T g 264–269 °C). New high-performance self-reinforced polyimide nanocomposites may act as potential contenders for light-weight aerospace materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号