首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
多孔铝阳极氧化膜的制备及膜孔的影响因素   总被引:3,自引:0,他引:3  
采用阳极氧化法制备铝氧化膜,探讨了前处理、电解液组成、电解液浓度以及氧化电压等参数对氧化过程的影响.实验结果表明:前处理对氧化膜的质量有较大影响;适当比例的磷酸和草酸的混合酸制备的多孔膜质量最佳,在一定范围内,提高阳极氧化电压可使膜的孔密度减小,孔径增大,膜的有序性增加.两步阳极氧化法制备的多孔氧化铝模板的有序性优于一步氧化法.  相似文献   

2.
氧化电压对多孔阳极氧化铝膜结构及形成的影响   总被引:3,自引:1,他引:2  
以草酸为电解液研究了氧化电压对多孔阳极氧化铝膜的影响,采用场发射扫描电子显微镜(FE-SEM)对多孔阳极氧化铝膜的表面形貌进行表征.结果表明:氧化电压决定多孔阳极氧化铝膜纳米孔的大小;在一定电压范围内,氧化膜厚度随氧化电压的升高而增加.电流密度与氧化时间的关系曲线表明:在不同电压下多孔阳极氧化铝膜的形成历程基本相同,但形成多孔氧化铝膜时的电流密度随氧化电压的升高而增加.XRD分析结果证实:多孔氧化铝膜由非晶态的Al2O3组成,其组成不随阳极氧化电压而变化.  相似文献   

3.
铝阳极氧化着色工艺的研究   总被引:3,自引:0,他引:3  
分别采用草酸、硼酸和磺基水杨酸为主盐的复合电解液对铝进行阳极氧化着色研究,结果表明:当电压控制在50~60V,溶液温度20~60℃时,可在铝表面形成一层黄色、灰色或香槟色系的阳极氧化膜,氧化膜具有优异的耐蚀性能;电解液组成、阳极氧化峰值电流以及溶液搅拌强度对氧化过程和氧化膜的性能会产生明显影响.  相似文献   

4.
本文采用阳极氧化法制备多孔Al2O3陶瓷膜,研究了电流密度、氧化时间和电解液对铝表面原位生长多孔氧化铝膜的影响。应用扫描电镜(SEM),能谱仪(EDS)和X射线衍射(XRD)等手段分析研究了氧化铝膜的相结构和表面形貌。  相似文献   

5.
采用阳极火花氧化处理技术,在含有钼酸盐等金属盐的碱性电解液中,通过阳极氧化在铝表面形成了复合转化膜。对电解液中的各组分在成膜过程中的作用及电解工艺参数对成膜过程和膜层性能的影响进行了研究探讨。通过与铬酸盐化学氧化法、常规阳极氧化法相比较,结果表明,铝表面阳极火花氧化方法形成的膜层比其它膜层有着更好的功能特性。  相似文献   

6.
用于高压电解电容器铝箔的阳极氧化;铝的磷酸阳极氧化大孔径厚膜工艺;一种低温阳极氧化电解液;剥离纳米铝阳极氧化膜的方法。  相似文献   

7.
<正>0前言硫酸阳极氧化可以获得多孔、无色透明的阳极氧化膜。该膜不仅具有良好的耐蚀性和耐磨性,还具有吸附色料、涂料的性能。阳极氧化膜的质量主要取决于铝件成分、膜厚、电解液温度、电流密度、用水水质,以及阳极氧化后的填充封闭等。本文介绍了硫酸阳极氧化膜常见质量问题的产生原因和解决方法。1阳极氧化膜疏松或粉化1.1产生原因(1)电解液温度过高。(2)阳极氧化处理时间过长。(3)电流密度过大。  相似文献   

8.
苏奥  王磊  陈慧 《电镀与精饰》2022,44(1):22-28
为有效提高铝锂合金的耐蚀性能,采用混合酸电解液(硫酸与柠檬酸的混合溶液)进行阳极氧化,然后对阳极氧化膜进行无铬封闭处理,并对阳极氧化膜的微观形貌、表面成分、厚度和耐蚀性能进行了分析表征。结果表明:混合酸阳极氧化后铝锂合金表面形成了均匀多孔的阳极氧化膜,主要含有Al、S和O元素,厚度为12.8μm,其耐蚀性能好于铝锂合金。沸水封闭、锆盐封闭、镍盐封闭和铈盐封闭对阳极氧化膜的厚度几乎没有影响,但封闭后阳极氧化膜表面平整度和致密性改善,耐蚀性能明显提高。铈盐封闭过程中同时生成水合氧化铝、铈氢氧化物和铈氧化物,更好的填充覆盖了孔洞,封闭效果好于沸水封闭、锆盐封闭和镍盐封闭,因此铈盐封闭阳极氧化膜表面更平整致密,抵御腐蚀能力增强,电荷转移电阻较铝锂合金提高了超过一个数量级,腐蚀失重仅为铝锂合金的1/9,可以显著提高铝锂合金的耐蚀性能。  相似文献   

9.
影响多孔阳极氧化铝膜结构特性因素的研究   总被引:4,自引:0,他引:4  
酸性电解液中采用电化学方法可在铝表面形成多孔阳极氧化铝膜。研究了影响膜孔径和膜厚的关键因素,包括电解液、氧化电压、温度和时间。此外,通过X-射线衍射和扫描电镜,分析了形成氧化膜的微观形貌和晶体结构。实验结果表明多孔阳极氧化铝膜结构特性依赖于采用的氧化条件、电解液、氧化时间和电压的选择。  相似文献   

10.
铝电化学阳极氧化技术研究进展   总被引:1,自引:0,他引:1  
深入探讨了铝阳极氧化膜的形成机理和结构特征,阐述了铝多孔氧化膜形成过程的主要影响因素;说明了不同氧化工艺参数下的膜形貌,介绍了铝多孔氧化膜独特的结构在功能材料上的应用状况和发展前景,并提出了氧化膜的发展趋势。  相似文献   

11.
采用二步电解着色法在铝型材上获得色泽均匀的仿不锈钢色,性能测试结果表明该着色膜具有良好的耐磨耐蚀性。  相似文献   

12.
张笑  冯月斌  陈阵  杨保民 《硅酸盐通报》2017,36(8):2668-2672
真空条件下,以Al2O3和Al为原料,通过Al2O歧化法制备微细Al2O3/Al复合粉体.XRD和SEM分析表明:在反应温度为1200~1400℃时,随着温度的升高,粉体中氧化铝含量升高;冷凝温度约为550~750℃时,复合粉体中的氧化铝包括稳定晶型和不稳定晶型;冷凝温度约为1100~1300℃时,复合粉体中的氧化铝全部为稳定晶型;冷凝温度约为550~650℃时,复合粉体的平均粒径小于0.5μm;冷凝温度约为750℃时,铝熔化、微粒团聚;冷凝温度约为1100~1200℃时,铝形成铝珠,氧化铝为不规则状、平均粒径小于2μm;冷凝温度约为1300℃时,氧化铝为片状.因此,通过选取合适的反应温度、冷凝温度,可以控制Al2O3/Al复合粉体中氧化铝的含量、晶型和粒径.  相似文献   

13.
Electrochemical analysis of zincate treatments for Al and Al alloy films   总被引:2,自引:0,他引:2  
Electrochemical behavior of Al and Al alloy films in zincate solution was investigated to elucidate the effect of the zincate pretreatment for electroless NiP deposition, which is used for under bump metallization for LSI interconnects. The immersion potential for AlCu and AlSiCu, immediately reached to constant, which was almost equal potential to zinc reference electrode. The corrosion current for the AlCu and AlSiCu films was larger than that of the Al and AlSi films in the zincate solution. It was also confirmed that the deposited Zn at the surface of AlCu and AlSiCu films possessed smaller grain size and larger amount of nucleation, resulted in the formation of flat NiP films.  相似文献   

14.
An experimental study on the aluminum oxynitride and aluminum nitride formation by combustion of mixtures of micron-sized aluminum powder (average particle diameter as ∼9.0 μm) and alumina nanopowder (as ∼0.05 μm) of the fixed mass (∼10 g) and different mass ratios (Al/γ-Al2O3 = 0.1–19.0) in air is reported. The formation of aluminum oxynitride (Al3O3N) and aluminum nitride during the combustion of powdery aluminum-based mixtures in air is discussed in this study. The combustion synthesis of Al3O3N and AlN was carried out in self-sustaining way. XPS-FESEM, XRD and chemical analysis were executed on final products of synthesis. The combustion process was also recorded by a video-camera. It was found that powdery mixtures, ignited by local heating, burned in one- or two-stage self-propagating regime. The combustion regime is different for different initial mass ratios Al/γ-Al2O3 and mainly depends on the content of fuel (aluminum powder) in mixture.  相似文献   

15.
Corrosion rates and negative difference effects for Al and some Al alloys   总被引:2,自引:0,他引:2  
The rotating disc-ring technique with a Pt ring was used to quantitatively detect hydrogen evolved on an Al-disc electrode during spontaneous corrosion at open-circuit potential or during anodic polarization of an Al disc to study the unusual increase of H2 evolution with increase in anodic current (the so called negative difference effect). Experiments were made with high purity Al (99.999%), technical grade Al (99.5%) (Al–T) and Al–In alloy (0.074% In) in deaerated 0.5m aqueous NaCl solution (pH6.5) and NaCl solutions acidified with HCl to pH values of 3.0, 2.0 and 1.0. It was shown, in neutral solutions, that the corrosion rates of all three materials are controlled by the rate of water molecule dissociation or in more acid solutions, by the combined water molecule dissociation rate and H+ ion discharge rate. The corrosion rates of all three materials in the range of 3–10Acm2, was the lowest for 99.999% Al. The impurities in Al–T and Al–In increase the hydrogen evolution rate at cathodic polarizations in a similar manner, but very differently affect the negative difference effect. High purity Al and Al–T have a similar negative difference effect (8–15%), while the presence of In decreases it to only about 1%. No pitting and no negative difference effect were observed at potentials more negative than Epit. Therefore, the negative difference effect is connected with the anodic pitting dissolution mechanism. Several aspects of this problem are discussed in more detail.  相似文献   

16.
Depending on the recipe and the firing conditions, several non-oxides can be formed in Al2O3-C refractories. In this paper, the effect of the purity of the recipe components on the phase formation in Al2O3-C refractories with Al addition was investigated. Two test series were sintered from 800 °C to 1600 °C under air embedded in coke breeze. One test series was with brown fused alumina, and the other was with tabular alumina. At temperatures of up to 1200 °C the phase formation was the same for both recipes. For temperatures greater than 1400 °C, the impurities of brown fused alumina enhanced the formation of a polytype, while Al4O4C and Al28O21C6N6 were formed in the other series. The findings explain the occurrence of several non-oxides in disequilibrium at the chosen temperatures. The occurrence of Al4C3 was of particular interest due to its low hydration resistance. It was formed at 1200 °C.  相似文献   

17.
铝材化学氧化   总被引:2,自引:0,他引:2  
近年来随着我国电子通讯工业的发展 ,铝及其合金的表面加工量也随之增加 ,铝材产品需要进行化学氧化 (其中很多为导电氧化 )。同时对质量要求也越来越高。我们想通过近三年来在铝化学氧化中的情况和生产经验作一个总结 ,供电镀界同仁互相探讨 ,共同提高。众所周知 ,铝化学氧化是指在一定的温度下 ,使铝表面与溶液通过化学作用 ,形成一层致密氧化膜。化学氧化按其溶液的性质又可分为碱性和酸性两类。我厂采用酸性氧化液进行化学氧化。1 工艺流程化学除油碱腐蚀 (去氧化皮 )清洗双酸出光清洗化学氧化清洗浸热水 (5 0~ 6 0℃ )冷风或热风吹干…  相似文献   

18.
In this paper,X-ray diffractogram analysis and SEM observation of Al4C3 formed at high temperature from carbon-containing refractories with Al have been carried out.Aluminum added to carbon-containing refractories reacts with C(s) to form Al4C3(s) gradually during heating from 600℃ to 1200℃,It is considered that the interlocked structure of Al4C3 plate crystals promotes the outstanding increase of hot modulus of rupture of carbon-containing refractories with Al.The HMOR of carbon-contatining refractories with Al.The HMOR of carbon-containing refractories added with Al additive from 0 to 5wt% increases by 2.8 times being from 6.5MPa to 18.2MPa.After a thermochemical Calculation for hydration reaction Processes of Al4C3 and H2O(g),the equilibrium partial pressure chart of H2O(2)in H2O-Al4C3-Al(OH)3 system vs various temperatures has been attained.The H2O(g) partial pressure in the air needed for the Al4C3 hydration reaction is no more than 10-18 atm at the temperature below 120℃。It is considered that the temperature below 120℃. It is considered that the burned carbon-containing refractories with Al is extremely easy to hydrate and the cracking of buurned carbon-containing refractories is generated because that the hydration expansion is 2.11 times during transforming from Al4C3 to Al(OH)3.The fundamental measure against hydration of the refractories is to insulate the refractories from H2O(g) by various means such as pitch impregnatiion or other sealing materials.  相似文献   

19.
The electrochemical behaviour of Al, Al—In and Al–Ga–In alloys in 0.6 m NaCl solutions with and without Zn2+ was investigated. The study was performed by means of open circuit potential, potentiodynamic polarization, potentiostatic current-time and electrochemical impedance spectroscopy measurements as well as by SEM-EDAX examination. It was found that the Al—In alloy exhibits the highest negative open circuit potential in 0.6 m NaCl and the corrosion resistance of the tested electrodes decreases in the following order: Al > Al–Ga–In > Al—In. The greater activity of the Al—In alloy was interpreted on the basis of the autocatalytic attack by indium. The potentiostatic current–time measurements in Zn2+ containing electrolyte at potentials above the pitting potential revealed that Zn2+ has an insignificant influence on the Al electrode, while it enhances the corrosion of the Al–Ga–In alloy and improves the attack morphology of the Al—In alloy. Furthermore, the impedance spectra recorded under open circuit conditions showed a decrease in the polarization resistance of Al—In and Al–Ga–In alloys in presence of Zn2+ indicating the activating effect of Zn2+ ions.  相似文献   

20.
Directed bonding with Al and Al2O3 was achieved using a transient liquid phase (TLP) method after annealing at the low melting point of Al, which deposited Ni, Cu, Ge, and Si on the Al2O3 substrate. Al/Al2O3 microstructures were evaluated using a scanning electron microscopy and transmission electron microscopy. A reaction layer was absent at the Al/Al2O3 interface, and all deposited metal films dissolved into the Al foil and reacted with Al to form an eutectic liquid phase near the interface to wet and join with the Al2O3. Al9Fe2 and Al3Fe intermetallic compounds were formed in the Al substrate because of Fe precipitation, which is an impurity of Al foil, and the reaction with Al at the grain boundaries of Al. The bonding area percentage, shear strength, and thermal conductivity for Al and Al2O3 were assessed using scanning acoustic tomography (SAT), the ISO 13 124 shear strength test, and the laser flash method, respectively. The Al/Al2O3 specimen deposited with the Ni film had the highest shear strength (33.74 MPa), thermal conductivity (42.3 W/mK), and bonding area percentage (96.78%). The Al/Al2O3 specimens deposited with Ge and Si exhibited relatively poor bonding because of the oxidation of Ge and Si at the surface of Al2O3 before bonding with Al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号