首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition from two-dimensional (2D) pseudomorphic growth to the three-dimensional (3D) (nanoisland) growth in InxGa1?xAs/GaAs multilayer structures grown by molecular-beam epitaxy was investigated by atomic force microscopy, photoluminescence, and Raman scattering. The nominal In content x in InxGa1?xAs was varied from 0.20 to 0.50. The thicknesses of the deposited InxGa1?xAs and GaAs layers were 14 and 70 monolayers, respectively. It is shown that, at these thicknesses, the 2D-3D transition occurs at x ≥ 0.27. It is ascertained that the formation of quantum dots (nanoislands) does not follow the classical Stranski-Krastanov mechanism but is significantly modified by the processes of vertical segregation of In atoms and interdiffusion of Ga atoms. As a result, the InxGa1?xAs layer can be modeled by a 2D layer with a low In content (x < 0.20), which undergoes a transition into a thin layer containing nanoislands enriched with In (x > 0.60). For multilayer InxGa1?xAs structures, lateral alignment of quantum dots into chains oriented along the \([\overline 1 10]\) direction can be implemented and the homogeneity of the sizes of quantum dots can be improved.  相似文献   

2.
The specific features of defects of crystal lattices in multilayer device structures containing small-period (T ? 20 nm) superlattices of type I ZnSe/Cd x Zn1 ? x Se/ZnSe/.../ZnSe/(001)GaAs and type II ZnS/ZnSe1 ? x S x /ZnS/.../ZnS/(001)GaAs are studied by the methods of X-ray diffractometry and diffraction rocking pseudocurves, and partially by the X-ray topography. According to the data of quantitative analysis of the X-ray diffraction spectra, the periods of superlattices are in the range T I = 11.3–16.1 nm (for the compositions Cd x Zn1 ? x Se with x 1 = 0.047 and x 2 = 0.107) for type I superlattices and T II = 15.6–17.2 nm for type II superlattices (for the compositions ZnSe1 ? x S x with x 1 = 0.20 and x 2 = 0.10). The widths of diffraction peaks from both the ZnSe layers and small-period superlattices in the diffraction rocking pseudocurves considerably exceed their widths in the X-ray diffraction spectra. This fact proves that a pronounced plastic strain with the formation of series of rectilinear dislocations in the crossing slip systems took place in the studied device structures. In order to exclude the generation of dislocations in the growth processes, it is necessary to decrease the concentration of the solid solution to the values x < 0.047 for the first type of superlattices and to the values x ? 0.062 for the second type of superlattices, and to decrease the thickness of the ZnSe and ZnS layers.  相似文献   

3.
The problem of the efficiency of the controllable formation of arrays of silicon nanoparticles is studied on the basis of detailed investigations of the electronic structure of multilayer nanoperiodic a-SiO x /SiO2, a-SiO x /Аl2О3, and a-SiO x /ZrO2 compounds. Using synchrotron radiation and the X-ray absorption near edge structure (XANES) spectroscopy technique, a modification is revealed for the investigated structures under the effect of high-temperature annealing at the highest temperature of 1100°C; this modification is attributed to the formation of silicon nanocrystals in the layers of photoluminescent multilayer structures.  相似文献   

4.
Monolithic dual-junction GaInP/GaAs solar cells grown by the MOCVD method were studied. The conditions of the growth of ternary Ga x In1?x P and Al x In1?x P alloys lattice-matched to GaAs are optimized. Technology for fabrication of a tunneling diode with a high peak current density of 207 A/cm2 on the basis of heavily doped n ++-GaAs:Si and p ++-AlGaAs:C layers is developed. Cascade GaInP/GaAs solar cells obtained as a result of relevant studies featuring a good efficiency of the solar-energy conversion both for space and terrestrial applications. The maximum value of the GaInP/GaAs solar-cell efficiency was 30.03% (at AM1.5D, 40 suns).  相似文献   

5.
A model of the delta lattice parameter is used to study the thermodynamics of AlGaN, InGaN, and InAlN alloys. The phase diagrams obtained indicate that AlxGa1?xN is stable in the entire range of x, whereas the miscibility gap corresponds to 0.2 < x < 0.69 for InxGa1?xN and to 0.16 < x < 0.7 for InxAl1?xN at 1000 K. Biaxial stresses lower the critical temperature and narrow the miscibility gap. The charge-density distribution is analyzed using the pseudopotential method to obtain an approximation of 32-atom supercells. The results of the analysis show that the stability of these alloys is controlled by the competition between the destabilizing contribution of strains related to the mismatch between the lattice constants and a stabilizing charge exchange between various chemical bonds. Biaxial stress reduces the charge redistribution caused by strains and thus increases the stability of an alloy.  相似文献   

6.
(1???x)K0.5Na0.5NbO3-x(Bi0.5K0.5)ZrO3 [abbreviated as (1???x)KNN-xBKZ, 0?≤?x?≤?0.08] lead-free ceramics have been fabricated by a solid-state processing route. Based on the x-ray diffraction data and temperature-dependent dielectric characteristics, an orthorhombic phase for x?≤?0.03 and single rhombohedral one for x?≥?0.05 at room temperature were determined. The cell volume firstly increases, then decreases and finally increases with increasing BKZ, depending on ionic size and crystallographic structure. For the sample of x?=?0.05, a temperature-stable high permittivity (~?1736?±?15%) along with low dielectric loss tangent (≤?5%) is recorded from 158°C to 407°C. In addition, the activation energies of dielectric relaxation and dc conductivity at high temperatures were characterized by impedance spectroscopy. A combined effect of lattice distortion and oxygen vacancies on the magnitude of activation energies was discussed.  相似文献   

7.
Conditions for the transition from the staggered heterojunction to the type-II broken-gap one were considered for isolated Ga1?x InxAsySb1?y /InAs(GaSb) heterostructures in relation to the quaternary alloy composition. Energy-band diagrams of such heterojunctions were estimated and energy band offsets Δ at the heterointerface were determined. It was experimentally found that the type-II broken-gap heterojunction in the Ga1?x InxAsySb1?y /p-InAs structure is observed in the entire range of composition parameters under study, 0.03 < x < 0.23, and becomes staggered in the range 0.3 < x < 1. In p-Ga1?x InxAsySb1?y /p-GaSb heterostructures with the indium content 0.85 < x < 0.92 in the solid phase, the p-type conductivity is observed, which is indicative of the staggered heterojunction. At x > 0.92, the contribution of electrons of the semimetal channel at the heterointerface to the total conductivity was observed, as well as the transition from the staggered heterojunction to the type-II broken-gap one.  相似文献   

8.
The possibility of using the normal skin effect in dielectric waveguides for long-wavelength radiation is analyzed. A design of a waveguide integrated with a heterolaser is suggested, in which an undoped layer of GaAs is clad between heavily-doped n- and p-Al x Ga1 ? x As alloy layers, reflecting radiation because of the normal skin effect. It is shown that an efficient waveguide can be formed using n-Al x Ga1 ? x As layers with x < 0.45 and the electron concentration N > 5 × 1018 cm?3 and p-Al x Ga1 ? x As layers of any composition with the hole concentration P ≥ 3 × 1019 cm?3.  相似文献   

9.
The thermodynamic stability of Cd1?xHgxTe, MnxHg1?xTe, and ZnxHg1?xTe alloys is studied. Calculations performed in the context of the δ lattice-parameter model indicate that CdHgTe and ZnHgTe alloys are stable over the entire range of compositions at typical growth temperatures. At the same time, a miscibility gap is found in MnxHg1?xTe at 0.33 < x < 1 at T = 950 K, which is consistent with the known experimental data. It is shown that the biaxial strains observed in MnxHg1?xTe/CdTe and MnxHg1?xTe/Cd0.96Zn0.04Te thin epitaxial films lead to a narrowing of the miscibility gap and to insignificant lowering of critical temperatures.  相似文献   

10.
CdTe/Hg1 ? x Cd x Te heterostructures are studied. In the structures, CdTe is used as a passivating layer deposited as a polycrystal or single crystal on a single-crystal Hg1 ? x Cd x Te film. The film and a passivating layer were obtained in a single technological process of molecular beam epitaxy. The structure of passivating layers was studied by reflection high-energy electron diffraction, and the effect of the structure of the passivating layer on the properties of the active layer was studied by X-ray diffractometry. Mechanical properties of heterostructures were studied by the microhardness method. Electrical and photoelectrical parameters of the Hg1 ? x Cd x Te films are reported.  相似文献   

11.
The lattice constants of AlxGa1?x As epitaxial alloys with various AlAs (x) contents are determined for AlxGa1?xAs/GaAs(100) heterostructures grown by MOC-hydride epitaxy using X-ray diffractometry and an X-ray back-reflection method. An ordered AlGaAs2 (superstructural) phase is found in epitaxial heterostructures with x ≈ 0.50. The lattice constant of this phase is smaller than the lattice constants of an Al0.50Ga0.50As alloy and GaAs single-crystal substrate.  相似文献   

12.
The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd1?x Mg x Te barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd1?x Mg x Te layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd1?x Mg x Te double heterostructures is discussed. The stability of CdTe/Cd1?x Mg x Te heterostructures are investigated with respect to thermal processing.  相似文献   

13.
(1 ? x)BaTiO3xBi(Cu0.75W0.25)O3 [(1 ? x)BT–xBCW, 0 ≤ x ≤ 0.04] perovskite solid solutions ceramics of an X8R-type multilayer ceramic capacitor with a low sintering temperature (900°C) were synthesized by a conventional solid state reaction technique. Raman spectra and x-ray diffraction analysis demonstrated that a systematically structural evolution from a tetragonal phase to a pseudo-cubic phase appeared near 0.03 < x < 0.04. X-ray photoelectron analysis confirmed the existence of Cu+/Cu2+ mixed-valent structure in 0.96BT–0.04BCW ceramics. 0.96BT–0.04BCW ceramics sintered at 900°C showed excellent temperature stability of permittivity (Δε/ε 25°C ≤ ±15%) and retained good dielectric properties (relative permittivity ~1450 and dielectric loss ≤2%) over a wide temperature range from 25°C to 150°C at 1 MHz. Especially, 0.96BT–0.04BCW dielectrics have good compatibility with silver powders. Dielectric properties and electrode compatibility suggest that the developed materials can be used in low temperature co-fired multilayer capacitor applications.  相似文献   

14.
The formation of a continuous series of substitutional solid solutions is theoretically considered from the viewpoint of taking into account generalized moments and differences in the valence and the covalent radii of atoms or molecules of initial components. These considerations are used to develop technology for the fabrication of (Si2)1?x(GaAs)x (0≤x≤0.96) and (Si2)1?x(GaP)x (0≤x≤1) epitaxial layers on silicon substrates from a tin melt-solution by the forced cooling method. The distribution of components over the thickness of the (Si2)1?x(GaAs)x and (Si2)1?x(GaP)x layers, the photosensitivity, and the current-voltage characteristics of Si-(Si2)1?x(GaAs)x and Si-(Si2)1?x(GaP)x heterostructures were studied. The analysis of results of X-ray investigations and photoelectric properties indicate that the grown epitaxial layers of (IV2)1?x(III-V)x solid solutions are structurally perfect.  相似文献   

15.
Bi1?x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ~200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1?x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal–semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1?x Sb x thin films with thicknesses in the range d = 250–300 nm prepared by thermal evaporation of Bi1?x Sb x crystals (x = 0–0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1?x Sb x crystal composition are reproduced in thin films.  相似文献   

16.
Electron spin resonance in semimagnetic Cd1?xMnxTe (0<x<0.7) and Zn1?xMnxTe (0<x<0.53) compounds was studied at temperatures of 77 and 300 K. It is found that two types of paramagnetic centers exist in Zn1?xMnxTe, one of which is related to Mn2+ ions and the other is attributed to structural defects in the crystals.  相似文献   

17.
Two valence states of tin atoms are identified by Mössbauer and X-ray photoelectron spectroscopy in (As2Se3)1?z (GeSe) z?x (SnSe) x glasses; it is shown that the presence of bivalent tin in the structural network of a glass does not give rise to impurity conductivity and impurity optical absorption. It is suggested to regard (As2Se3)1?z (GeSe) z?x (SnSe) x and (As2Se3)1?z (GeSe2) z?x (SnSe2) x glasses as semiconductor solid solutions whose electrical properties depend both on the electrical properties of the starting components and on the composition of the solid solutions.  相似文献   

18.
The lattice parameters and band gap are experimentally determined for Si-Si1?xGex structures in relation to the component ratiox (0 ≤ x ≤ 1). The distribution of components over the hickness of the Si1?xGex alloys and certain photoelectric properties are studied. The experimental data indicate that the structures obtained are of high quality. Graded-gap Si1?xGex alloys (0 ≤ x ≤ 1) can be used for the fabrication of photoelectric devices sensitive in the visible and near-IR regions. They can also be used as substrates for GaAs and GaAs-based layers.  相似文献   

19.
The basic types of optically active erbium centers that make the major contribution to the photo-luminescence signal from the Si/Si1 ? x Ge x :Er heterostructures with the Ge content from 10 to 30% are analyzed in detail. It is shown that the origin of the optically active centers containing Er3+ ions correlates with the molar composition of the Si1 ? x Ge x :Er layer and the content of oxygen impurity in the layer. The major contribution to the photoluminescence signal from the Si/Si1 ? x Ge x :Er heterostructures with the Ge content below 25% is made by the well-known centers containing Er3+ ions and oxygen. An increase in the Ge content in the Si1 ? x Ge x :Er layer (x ≥ 25%) yields the formation of a new type of centers, specifically, the Gecontaining optically active erbium centers unobserved in the Si-based structures previously.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号