首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
针对钙芒硝矿传统水溶浸出过程会产生石膏钝化层的问题,采用碳酸铵对钙芒硝矿进行化学浸出。通过单因素试验考察了反应温度、反应时间、碳酸铵用量和液固比对钙芒硝矿浸出效果的影响,并利用正交试验得出了最优工艺条件,即反应温度60℃、反应时间50min、碳酸铵用量为理论用量的110%、液固比8∶1,此时钙芒硝矿的浸出率达到了93.6%。  相似文献   

2.
张晓刚  高永波  徐强  刘代俊  龙华  唐瑜 《应用化工》2013,42(6):1026-1028,1032
石煤钒矿经过钙化焙烧后,用氢氧化钠溶液浸取提钒。研究了钒矿的粒度、焙烧时间、焙烧温度、添加剂种类、氢氧化钠用量、液固比、浸取时间、浸取温度等因素对浸出率的影响。结果表明,在钒矿的粒径为100~200目,添加剂碳酸钙用量为5%,温度900℃的条件下焙烧2 h,液固比3∶1(质量比),氢氧化钠用量15%,碱浸温度103℃(微沸),碱浸时间为3 h的条件下,钒的浸出率可达到90%以上。  相似文献   

3.
刘美 《化学与粘合》2011,33(2):75-78
通过焙烧、水浸实现了原生硫化镍钼矿中镍和钼的分离,得到的较优工艺条件为:焙烧时,原矿和无水碳酸钠质量比1:0.9、560℃焙烧6h,650℃焙烧1.5h,焙砂中镍品位为2.67%,钼品位为5.81%;在固液比1:4,温度95℃的条件下,水浸焙烧渣2h,98.21%的镍留在滤渣中,95.43%的钼进入滤液,有效地实现了钼...  相似文献   

4.
采用氯化铵焙烧法处理福泉磷肥厂的镍磷铁并提取其中的镍,研究氯化铵与镍磷铁矿质量比、焙烧温度、焙烧时间等工艺条件对镍磷铁矿氯化焙烧浸出效果的影响。结果表明:当焙烧温度为773 K、焙烧时间为15 min、氯化铵与矿料质量比为0.8∶1.0时,镍在常温下水浸5 min的浸出率为86.19%。  相似文献   

5.
采用酸性氧化预处理—氧化浸出工艺对镍钼矿进行了浸出回收,并确定了各阶段的主要工艺参数。原矿先进行酸性氧化预处理去除碳,NaClO3用量为原矿质量的11%,硝酸浓度为1.0mol/L,90℃下反应1.5h后,再进行氧化浸出,其中H2O2的量为原矿质量的9%,液固比为4∶1,60℃下浸出1.5h。钼的浸出率可达99%左右,镍的浸出率在94%以上。  相似文献   

6.
废加氢催化剂中含有大量的有机污染物和金属元素,如钼、钒、镍和铝,若处理不当,会造成严重的生态污染和资源浪费。本研究采用空气焙烧-碳酸钠浸出法处理废弃加氢催化剂以回收其中的钼和钒。通过热力学计算可知低温碳酸钠浸出可以实现废催化剂中钼、钒与铝、镍的分离。单因素实验考察了空气焙烧温度、碳酸钠浓度、反应时间、浸出温度、液固比等工艺条件对钼和钒浸出率的影响。实验结果表明,在焙烧温度500℃,碳酸钠浓度4 mol/L,浸出温度80℃,反应时间90 min,液固比为20:1的条件下,钼和钒的浸出率可分别达到98.02%和94.36%。为了最大限度地回收钼和钒,采用二段逆流浸出流程处理废加氢催化剂,可将钼和钒的浸出率维持在98%和97%。浸出渣中主要含有Al2O3, NiO和NiAl26O40,而绝大部分钼和钒被转移至浸出液中。  相似文献   

7.
以凤凰县石煤钒矿为原料,经焙烧后采用氢氧化钠溶液浸出,得到V(Ⅳ)质量分数为98.10%的+4价石煤钒矿,在硫酸用量35%、液固比1∶1、浸出温度95℃和时间10 h条件下,+4价石煤钒矿中钒的浸出率为81.8%,研究了+4价态含钒石煤钒矿直接浸出动力学,结果表明:在实验温度范围内,钒的浸出过程符合混合控制过程,近似求得其反应表观活化能为32.92 kJ/mol。  相似文献   

8.
采用硫酸浸出工艺从镍磷铁中浸出镍,考察温度、固液比、硫酸质量分数和浸出时间对浸出过程的影响。研究结果表明,在温度为80℃,固液比为1∶10,硫酸质量分数为40%和加入少量过氧化氢浸出12 h时,镍磷铁中镍和磷的浸出率分别为91.0%、85.9%。  相似文献   

9.
从红土镍矿镍铁渣中分离浸取镍铬工艺   总被引:1,自引:0,他引:1  
将镍铁渣破碎、球磨后磁选富集Ni于精矿中,富集Cr于尾矿中. 磁选后Ni从0.26%富集至2.57%(w),Cr从4.55%富集至4.61%(w). 考察了H2SO4常压酸浸精矿时Ni的浸出规律. 结果表明,在酸浸温度110℃、酸浓度220 g/L、酸浸时间2 h、液固质量比5的优化酸浸条件下,Ni浸出率为91.5%. 在80~120℃内,Ni浸出反应活化能为19.6 kJ/mol. Ni浸出反应主要受扩散控制. 用Na2CO3碱熔焙烧尾矿,在温度1000℃、Na2CO3/渣质量比0.65、时间1 h、镍铁渣尾矿粒度<74 mm的优化条件下,Cr浸出率为94.1%.  相似文献   

10.
硫化叶菌对镍钼硫化矿的浸出作用   总被引:4,自引:0,他引:4  
对金属硫叶菌浸出镍钼硫化矿进行了研究. 结果表明,有菌组镍的浸出率均在90%以上,而无菌组为77.64%;驯化菌比非驯化菌的浸出率高,前者镍和钼的浸出率分别为94.7%和70.2%,后者为93.1%和68.4%;pH为2时浸出效果最佳,镍浸出率达100%,钼浸出率为66.97%;粒径<0.048 mm和<0.077 mm的浸样镍浸出率均达到100%,钼浸出率分别为68.4%和64.5%;低矿浆浓度比高矿浆浓度的浸出率高,5 g/L矿浆镍和钼的浸出率分别达100%和87.29%;在无菌条件下,浸样添加0.5 g/L Fe3+和对照组的镍浸出率分别为92.8%和76.6%,钼浸出率为52.56%和49.34%;嗜热菌(金属硫叶菌)比常温菌(氧化亚铁硫杆菌)的浸出率高,前者镍钼浸出率分别为93.17%和73.52%,后者为67.34%和38.36%.  相似文献   

11.
在理论分析的基础上,以贵州遵义镍钼矿为原料,提出了镍钼矿碱性还原熔炼?水浸提钼的清洁冶金新工艺,考察了Na2CO3用量、温度、还原剂用量、反应时间对镍还原率及钼浸出率的影响,在最优条件下进行了扩大实验. 结果表明,在碱性介质及强还原气氛下,镍钼矿中的镍被还原成高品位镍铁合金,钼转化为可溶性的钼酸盐;最佳工艺条件为Na2CO3用量为理论量的2倍、熔炼温度1000℃、还原剂添加量为镍钼矿的5wt%、反应时间1.5 h. 最佳条件下扩大实验金属镍回收率为94.92%,金属钼挥发率为9.36%,浸出率为99.94%,固硫率接近100%,得到了高品位镍铁合金和含钼浸出液,镍钼有效分离.  相似文献   

12.
为实现准东煤灰的绿色化综合利用,笔者研究设计了从准东煤灰中制取氧化铝和白炭黑的工艺流程,确定了最佳工艺条件,并通过SPSS双变量分析比较不同影响因素对提取率影响程度。试验采用准东煤--将军庙原煤,破碎并用马弗炉模拟煤粉炉静态燃烧方式制取灰样。准东煤灰的成分分析和元素分析表明:SiO2占48.84%,Al2O3占31.26%。参照标准制备灰样,对灰样进行SEM分析,发现粘黏性严重,因此试验前先进行机械研磨。采用煤灰与硫酸铵焙烧法制备氧化铝,工艺分为焙烧过程和酸浸过程。因滤液中含有大量杂质铁、钙等元素,采用pH调节法除杂并对除杂效果进行检验,检验结果为除杂率接近100%。从提铝渣中制备白炭黑分为碱浸过程和多次碳分过程。在提铝工艺焙烧过程中,通过提铝率变化曲线及节能角度确定了各因素的最佳试验条件为:焙烧温度600℃,焙烧时间60 min,焙烧配料比1∶6;在提铝工艺酸浸过程中,得到最佳试验条件为:酸浸温度60℃、酸浸时间20 min、H2SO4浓度0.2 mol/L、酸浸液固比50。从提铝渣制备白炭黑研究中,通过SEM观察到提铝渣疏松多孔,有利于进一步的提硅试验。通过XRD对提铝渣分析,得出提铝渣中含有大量硅、钙元素;用K值法(RIR法)求得提铝渣中Si含量及经提铝后的Si损失率为7.64%。得出碱浸过程最佳试验条件为:碱浸温度60℃、碱浸时间30 min、碱浸NaOH浓度3 mol/L、碱浸液固比70,此时Si提取率为99%。采用多次碳分法进行提硅能够满足不同硅含量纯度要求,得到最佳碱浸工艺条件为碳分pH=9.5、CO2通气速率24 m L/min、碳分NaOH浓度0.2 mol/L、碳分液固比80。通过双变量相关性分析,得到各因素对提铝率、SiO2提取率及H2SiO3沉淀率影响程度大小分别为:焙烧温度>焙烧时间>焙烧配料比,酸浸时间>酸浸温度>H2SO4浓度>酸浸液固比,碱浸液固比>碱浸温度>NaOH浓度>碱浸时间,碳分pH>碳分液固比>碳分NaOH浓度>CO2通气速率。通过经济性及可行性分析,说明提出的工艺能有效实现准东煤灰的绿色化综合利用。从提铝后的滤液中重新提取(NH4)2SO4,实现生产原料的再利用;碳分过程后的Na2CO3溶液可通过加入石灰苛化的方式实现NaOH可循环利用于提取工艺生产;本工艺除生产氧化铝和白炭黑外,还能获得Na2SO4等附加产品。  相似文献   

13.
在外加电场强化的条件下,实验采用氯化铵法浸取毒重石,考察了液固质量比、氯化铵用量、阳极电流密度、反应温度和浸出时间等因素对钡浸取率的影响。实验结果表明,当液固质量比为5∶1,阳极电流密度为900 A/m2,原矿石与氯化铵质量比为1∶1,温度为90 ℃,浸取时间为3 h时,钡的浸取率高达91.53%。与传统的氯化铵法相比,电场强化下的钡矿浸取率提高了10.42%。  相似文献   

14.
用(NH4)2SO4焙烧分解碳素铬铁冶炼渣,提取有价金属,考察了焙烧温度、硫酸铵用量和焙烧时间对有价金属浸出率及过程相变的影响. 结果表明,焙烧过程中250~435℃间失重达65.5%,主要为NH3,H2O,SO3释放及(NH4)2SO4挥发. 优化的焙烧条件为(NH4)2SO4与铝镁渣质量比5:1、焙烧温度350℃,焙烧时间3.5 h. 有价金属转变为其相应的硫酸金属铵盐,且与(NH4)2SO4分解产物共存;该条件下的焙烧料90℃下浸出1 h,Mg, Al, Cr, Fe的浸出率分别为92%, 80%, 82%, 93%. 推测新生成的硫酸金属铵盐的片状聚集体阻碍碳素铬铁渣内部完全被(NH4)2SO4侵蚀.  相似文献   

15.
以内蒙古高铝粉煤灰(Al2O3/SiO2质量比1.24)为原料,采用Na2CO3焙烧活化-盐酸浸取法提铝,考察了焙烧温度、时间和碳酸钠/粉煤灰质量比的影响,对焙烧活化及酸浸提铝动力学进行研究,分析了提铝机理. 结果表明,高温活化条件下,粉煤灰中的莫来石及SiO2与Na2CO3反应生成NaAlSiO4, Al2O3和Na2SiO3,酸浸后铝浸出率超过94.99%;活化过程符合Crank-Ginstling-Braunshtein模型,表观活化能为117.06 kJ/mol,活化反应受固膜扩散控制.  相似文献   

16.
In the present study lateritic nickel ore was used for bacterial leaching using a mixed consortium of mesophilic acidophiles. The microorganisms were adapted to 1 gram nickel/L prior to leaching. For the experiments, lateritic ore in different forms such as raw, roasted, roasted ore presoaked in dilute sulphuric acid and palletized pretreated roasted (400 °C and 600 °C) ore were taken. The leaching experiments were conducted in 9 K+ with 40 L capacity bioreactor using 10% (v/v) inoculum concentration at 10% (w/v) pulp density. The aeration was maintained at 2–3 L/min and the speed of agitator and temperature at 400–500 rpm and 35 °C. The maximum extraction of nickel and cobalt was observed with pretreated ore (600 °C) at 10% pulp density (77.23% and 73.22%) respectively within 31 days at pH 1.5 and least extraction in case of raw ore i.e., 9.47% nickel and 41.12% cobalt respectively.  相似文献   

17.
刘阳文  颜文斌  方玉 《广东化工》2014,(5):11-12,30
以低品位的软锰矿为原料,硫酸亚铁为还原剂,对还原浸取锰的工艺条件进行了研究。试验结果得到硫酸亚铁浸取锰的最佳工艺条件:硫酸亚铁和MnO2物质的量之比为2∶1,液固比4∶1,硫酸初始浓度10%,搅拌速度220 r/min,反应温度90℃,反应时间3 h。在该条件下锰的浸出率可达97.12%。  相似文献   

18.
采用水浸-冷结晶工艺由天然硼砂矿制取硼砂产品,研究了浸出温度、液固比、浸出时间、结晶温度和结晶时间等因素对浸出和结晶的影响。最优工艺条件:浸出温度为60 ℃,液固体积质量比为2 mL/g,浸出时间为30 min;结晶温度为0~10 ℃,结晶时间为6 h。在最优条件下,硼浸出率大于98%,硼砂结晶率接近94%,硼回收率约92%。制得的硼砂产品杂质含量低,纯度高,产品质量达到GB/T 537-2009《工业十水合四硼酸二钠》一等品指标要求。  相似文献   

19.
钒矿石活化焙烧-酸浸新工艺的研究   总被引:2,自引:0,他引:2  
对河南某钒矿进行了活化焙烧-酸浸实验,系统考察了添加剂种类与用量、焙烧温度、焙烧时间、浸取酸度、液固比、浸取温度及时间对钒浸取率的影响。实验结果表明:焙烧过程中,采用氧化钙为添加剂,控制添加量为10%,850~900℃下焙烧3h,矿样的活化效果较好;酸浸过程中,硫酸酸度为5%,液固比为2.5∶1,70~80℃,浸出3h的条件下,钒的浸出率最高,可达80%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号