首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finite element modeling of burnishing of AISI 1042 steel   总被引:2,自引:0,他引:2  
The aim of this study is to analyze the evolution of surface roughness finished by burnishing. Burnishing is done on a surface that was initially turned or turned and then ground. In a previous work, we have defined an analytical model to determine the Rt factor of burnished surfaces in relation to the feed f, the material displacement δ and the roughness Rti of the initial surface. δ has been calculated using the Hertz contact theory which supposes that the behavior of the workpiece material is elastic. Hence, in this paper, we have defined a finite element model in which the elasto-plastic behavior of the piece is taken into account to determine the material displacement δ. This model has also permitted the calculation of the residual stresses related to the macroscopic contact geometry. Good correlations have been found between experimental and finite element results when burnishing an AISI 1042 steel.  相似文献   

2.
A load-cell-embedded burnishing tool has been newly developed and integrated with a machining center, to improve the surface roughness of the PDS5 plastic injection mold steel. Either the rolling-contact type or the sliding-contact type was possible for the developed ball burnishing tool. The characteristic curves of burnishing force vs. surface roughness for the PDS5 plastic injection mold steel using the developed burnishing tool for both the rolling-contact type and the sliding-contact type, have been investigated and constructed, based on the test results. The optimal plane surface burnishing force for the PDS5 plastic injection mold steel was about 420 N for the rolling-contact type and about 470 N for the sliding-contact type, based on the results of experiments. A force compensation strategy that results in the constant optimal normal force for burnishing an inclined surface or a curved surface, has also been proposed to improve the surface roughness of the test objects in this study. The surface roughness of a fine milled inclined surface of 60 degrees can be improved from Ra 3.0 μm on average to Ra 0.08 μm (Rmax 0.79 μm) on average using force compensation, whereas the surface roughness was Ra 0.35 μm (Rmax 4.56 μm) on average with no force compensation.  相似文献   

3.
This paper is focused on the process of ball burnishing. The influence of tool stiffness on surface roughness parameters was considered theoretically, while experimental investigation was conducted to establish the influence of initial surface roughness (previous machining) on the effects of ball burnishing as the finishing process. Experimental investigations were conducted over a wide interval of most influential process parameters (burnishing forces, burnishing feed, and number of burnishing passes). The material used in the experiments was aluminum alloy EN AW-6082 (AlMgSi1) T651. Burnishing was performed using a specially designed tool of high stiffness. Statistical analysis of experimental data revealed strong correlation between roughness, R a, and burnishing force, burnishing feed, and number of passes for the three surfaces, each with different roughness parameters. Particular combinations of process parameters yielded very low surface roughness, R a, equivalent to polishing. It is worth noting that high surface quality can be achieved with relatively small burnishing forces, which differs from the investigations published so far. Contrary to conventional approaches, which are based on elastic tool systems, the authors propose the burnishing process to be conducted with high-stiffness tools. Further investigation shall be focused on optimization of burnishing process parameters in order to achieve surface finish equivalent to high polish.  相似文献   

4.
To reduce the irregularities of machined surface, burnishing is used as a finishing process by plastic deformation. This process does not only improve surface finish but also generates compressive residual stresses throughout the surface. In this work, an analytical study and a finite element modelling were performed to provide a fundamental understanding of the burnishing on an AISI 1042 workpiece. The analytical results were concentrated on the surface roughness and on some burnishing parameter effects. The simulations were devoted to the study of the surface profile, the residual stresses and the influence of burnishing parameters (penetration depth, feed rates, diameter of the ball of burnishing tool and initial surface quality) on surface roughness and the residual stress distribution. It has been noted that burnishing improves surface quality and introduces compressive residual stresses. These results were successfully compared to experimental data obtained in previous works.  相似文献   

5.
This study investigates the possibilities of automated spherical grinding and ball burnishing surface finishing processes in a freeform surface plastic injection mold steel PDS5 on a CNC machining center. The design and manufacture of a grinding tool holder has been accomplished in this study. The optimal surface grinding parameters were determined using Taguchi’s orthogonal array method for plastic injection molding steel PDS5 on a machining center. The optimal surface grinding parameters for the plastic injection mold steel PDS5 were the combination of an abrasive material of PA Al2O3, a grinding speed of 18000 rpm, a grinding depth of 20 μm, and a feed of 50 mm/min. The surface roughness Ra of the specimen can be improved from about 1.60 μm to 0.35 μm by using the optimal parameters for surface grinding. Surface roughness Ra can be further improved from about 0.343 μm to 0.06 μm by using the ball burnishing process with the optimal burnishing parameters. Applying the optimal surface grinding and burnishing parameters sequentially to a fine-milled freeform surface mold insert, the surface roughness Ra of freeform surface region on the tested part can be improved from about 2.15 μm to 0.07 μm.  相似文献   

6.
In this work, prediction of burnished surface roughness (R a) is achieved by using a fuzzy rule-based system. The process state variables used were burnishing speed, feed, and depth. The fuzzy rule-based system has achieved an accuracy of 95.4 % to predict the burnished surface roughness and proved to be convenient in terms of least computational complexity and dealing with nonlinear data such as that obtained in this work.  相似文献   

7.
In the present study, the analysis and optimization of the ball burnishing process has been studied. The Taguchi technique is employed to identify the effect of burnishing parameters, i.e., burnishing speed, burnishing feed, burnishing force and number of passes, on surface roughness, surface micro-hardness, improvement ratio of surface roughness, and improvement ratio of surface micro-hardness. Taguchi tools such as analysis of variance (ANOVA), signal-to-noise (S/N) ratio and additive model have been used to analyse, obtain the significant parameters and evaluate the optimum combination levels of ball burnishing process parameters. The analysis of results shows that the burnishing force with a contribution percent of 39.87% for surface roughness and 42.85% for surface micro-hardness had the dominant effect on both surface roughness and micro-hardness followed by burnishing feed, burnishing speed and then by number of passes.  相似文献   

8.
This investigation examines burnishing using a microscopic perspective and elucidates the mechanism of surface roughness improvement by asperity deformation. This study uses tribology theory to propose a burnishing factor L b to explain why the same burnishing result can be obtained in different burnishing conditions. The burnishing factor was determined by appropriate experiments, and the results demonstrated that a quadric curve relationship exists between surface roughness and burnishing factor and is analogous to the Stribeck curve in lubrication regimes.  相似文献   

9.
滚挤压是一种金属表面微塑性连续变形精加工工艺,现在日益被用作切削加工后的表面强化终处理工艺以获得具有压缩残余应力的高性能低粗糙度的镜面零件表面。本文分析了车削前处理工艺对后续滚挤压加工效果的影响,采用考虑交互作用的L27(313)正交试验设计与分析方法研究了车削滚挤压复合工艺中车削三要素(即车削速度v、车削进给量f、车削深度ap)和滚挤压三要素(即滚挤压速度vb、滚挤压进给量fb、滚挤压深度ab)对滚轮滚挤压45号钢的滚挤压效果(即表面粗糙度Ra、小负荷维氏硬度Hv的影响规律),其中考虑了对滚挤压效果影响最显著的车削进给量f、滚挤压深度ab与滚挤压进给量fb两两之间的交互作用,分析得出了对滚挤压效果影响最显著的主要因素及其规律。从试验的角度发现车削进给量对滚挤压效果有显著影响,与理论分析和预测相吻合。  相似文献   

10.
Burnishing is a cold working surface treatment process in which plastic deformation of surface irregularities occurs by exerting pressure through a very hard and a very smooth roller or ball on a surface to generate a uniform and work‐hardened surface. This treatment occurs generally after the machining process. In this study, a new combined machining/burnishing tool is designed and is fabricated. This tool allows for generating simultaneously the machining (turning) and the burnishing of the cylindrical surface using a turning machine. First, turned surfaces at different conditions, sketches, finishing and half finishing were performed using only the cutting tool. The evolutions of a surface roughness parameter and the technological time relative to every test condition have been investigated. Second, using the combined machining/burnishing tool at coarse conditions, the evolutions of the surface roughness and the technological time have been also investigated. A comparison among the parameters obtained under different machining conditions and those obtained using the combined machining/burnishing tool has been carried out. Moreover, the analyses of the layers obtained on the combined machined/burnished surface have shown that the burnishing process induces compressive residual stresses on the subsurface treated specimens. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Conventional ball burnishing processes using a roller or a ball pressed against round or small flat surfaces have long been used to improve hardness, fatigue strength, and wear resistance of mechanical parts by plastic deformation. However, the treatment of large flat surfaces using conventional techniques is rarely considered because of its time consumption. In the present work, the optimal burnishing parameters of rolled sheets of aluminum 1050A are determined by means of a newly developed burnishing tool device especially designed to treat large flat surfaces with orders of magnitude reduction in burnishing time. Experiments were designed and performed on a machining center based on response surface methodology with central composite design. The burnished specimens were then tested to find the burnishing condition under which ductility was improved. This study has resulted in significant new insights into the effect of burnishing on the surface quality and workpiece properties of aluminum 1050A plates. A second-order mathematical model, validated using data obtained from atomic force microscopy, was developed to predict the surface roughness as functions of speed, force, and feed rate. The results indicate that burnishing of aluminum 1050A plates improves its ductility, but not its micro-hardness. Following the various burnishing conditions, the micro-hardness measurements range from 40 to 43?HV (50?g), indicating that there is little or no hardening. Although a moderate effect with varied degrees is found on the surface roughness as functions of the investigated parameters, the burnishing force has a significant effect on ductility. The results also indicate that lower values of roughness do not guarantee better ductility for aluminum 1050A plates. Furthermore, the effect of the burnishing loads on the residual stresses was found to depend on the feed direction.  相似文献   

12.
It is well known that the no-chip machining process, burnishing, can easily improve surface roughness, waviness and hardness. To get the practical useful parameters, the effects of various burnishing parameters (spindle speed, depth, feed, burnishing radius and lathe) on surface roughness and waviness of the non-ferrous components were studied experimentally with a theoretical analysis. The experiments were conducted with a simply designed cylindrical surfaced polycrystalline diamond tool developed by us. It was found that smaller parameters do not mean lower surface roughness or waviness and different optimum burnishing parameters can be got under different burnishing conditions.  相似文献   

13.
The objective of this study is to determine the optimal plane ball-burnishing parameters for plastic injection moulding steel PDS5 on a machining centre by utilising the Taguchi’s orthogonal array method. The design and manufacture of a burnishing tool are described. Four burnishing parameters, namely the ball material, burnishing speed, burnishing force and feed, were selected as the experimental factors in Taguchi’s design of experiments to determine the optimal burnishing parameters which have the dominant influence on surface roughness. The optimal burnishing parameters were found after carrying out the experiments specified by Taguchi’s L18 orthogonal table, by the analysis of variation, and by a full factorial experiment. The optimal plane burnishing parameters for the plastic injection moulding steel PDS5 were a combination of a tungsten carbide ball, a burnishing speed of 200 mm/min, a burnishing force of 300 N and a feed of 40 μm. The surface roughness Ra of the specimen can be improved from about 1 μm to 0.07 μm by using the optimal burnishing parameters for plane burnishing.  相似文献   

14.
ABSTRACT

Polymers are utilized in numerous tribological applications because of their excellent characteristics; for example, accommodating shock loading and shaft misalignment. A high surface finish is required to ensure consistently good performance and extended service life of manufactured polymeric components. Burnishing is the best choice as a finishing process for this study due to its ability to increase hardness, fatigue strength, and wear resistance and also introduce compressive residual stress on the burnished workpiece. Due to the complexity and uncertainty of the machining processes, soft computing techniques are preferred for anticipating the performance of the machining processes. In this study, ANFIS as an adaptive neuro-fuzzy inference system was applied to anticipate the workpiece hardness and surface roughness after the roller burnishing process. Five burnishing variables, including burnishing depth, feed rate, speed, roller width, and lubrication mode, were analyzed. A Gauss membership function was used for the training process in this study. The predicted surface roughness and hardness data were compared with experimental results and indicated that the Gauss membership function in ANFIS has satisfying accuracy as high as 97% for surface roughness and 96% for hardness. Furthermore, the generated compressive residual stress on the burnished surface was studied by a 2D finite element model (FEM). The simulated results of residual stress were validated with the experimental results obtained from X-ray diffraction (XRD) tests.  相似文献   

15.
This paper explains the effect of turning parameters such as cutting speed, feed rate, depth of cut and cutting tool nose radius on surface roughness of hybrid metal matrix (Al-SiCp-Fly ash) composite. Experiments have been conducted based on the orthogonal array L16(4)5 and surface roughness was tested on the composites turned by an high speed CNC centre lathe. Analysis of variance (ANOVA) was performed to predict the significant parameters and their contribution towards surface finish of the composite. A mathematical model was developed using non-linear regression analysis. Taguchi method and Genetic algorithm have been employed to optimize the turning parameters for optimum surface roughness of the composite. The optimum turning parametric conditions have been checked with the confirmation experiments. It has been noted that the optimum condition of genetic algorithm exhibited better results than the experimental results based on the orthogonal array and the optimum condition of Taguchi method.  相似文献   

16.
A grindability study of chopped strand mat glass fiber reinforced polymer laminates (CSM GFRP) has been carried out to evaluate the effects of abrasive types on grinding force ratio and area roughness at varying grinding parameters such as speed, feed and depth of cut. Performances of alumina (Al2O3) and cubic boron nitride (CBN) wheels were compared. Both wheels delivered the maximum grinding force ratios at low speed, high feed and low depth of cut. Alumina wheel produced smoother surface when grinding at low speed, low feed and high depth of cut. CBN wheel, on the other hand, gave smoother surface at high feed and low depth of cut conditions, regardless of speed. With CBN wheel, it is likely that a single grinding condition exists that maximizes grinding force ratio and minimizes area roughness. The findings indicate that CBN wheel exhibited higher grinding force ratio than alumina grinding wheel in general. CBN grinding wheel also outperformed alumina grinding wheel by producing smoother ground surface in most cases.  相似文献   

17.
Most of the theoretical models for surface roughness in finish turning assume that the work piece surface profile is formed by the rounded tip of the tool nose. The effect of the straight flank section in the tool nose region on the surface roughness is usually neglected. In this work, the straight flank section is taken into account in order to predict the arithmetic average roughness R a and root-mean-square roughness R q more accurately. The analytical models for R a and R q are developed as a function of three parameters, namely feed rate, nose radius, and wedge angle. These models were verified using digital simulation method. The surface roughness determined using the new three-parameter models were compared with the existing two-parameter models that consider only the feed rate and nose radius. Decreasing wedge angle was found to lower the surface roughness significantly. An experiment was conducted to test the validity of the three-parameter model at different feed rates in real machining operation. The experimental results agreed more closely with the proposed three-parameter models compared to the two-parameter models.  相似文献   

18.
In this study, the prediction of surface roughness heights Ra and Rt of turned surfaces was carried out using neural networks with seven inputs, namely, tool insert grade, workpiece material, tool nose radius, rake angle, depth of cut, spindle rate, and feed rate. Coated carbide, polycrystalline and single crystal diamond inserts were used to conduct 304 turning experiments on a lathe, and surface roughness heights of the turned surfaces were measured. A systematic approach to obtain an optimal network was employed to consider the effects of network architecture and activation functions on the prediction accuracy of the neural network for this application. The reliability of the optimized neural network was further explored by predicting the roughness of surfaces turned on another lathe, and the results proved that the network was equally effective in predicting the Ra and Rt values of the surfaces machined on this lathe as well.  相似文献   

19.
Modelling and optimisation are necessary for the control of any process to achieve improved product quality, high productivity and low cost. The grinding of silicon carbide is difficult because of its low fracture toughness, making it very sensitive to cracking. The efficient grinding of high performance ceramics involves the selection of operating parameters to maximise the MRR while maintaining the required surface finish and limiting surface damage. In the present work, experimental studies have been carried out to obtain optimum conditions for silicon carbide grinding. The effect of wheel grit size and grinding parameters such as wheel depth of cut and work feed rate on the surface roughness and damage are investigated. The significance of these parameters, on the surface roughness and the number of flaws, has been established using the analysis of variance. Mathematical models have also been developed for estimating the surface roughness and the number of flaws on the basis of experimental results. The optimisation of silicon carbide grinding has been carried out using genetic algorithms to obtain a maximum MRR with reference to surface finish and damage.Nomenclature C constant in mathematical model - C1 constant in surface roughness model - C2 constant in the number of flaws model - d depth of cut, m - dof degrees of freedom - f table feed rate, mm/min - M grit size (mesh) - MRR material removal rate, mm3/mm width-min - Nc number of flaws measured - Ra surface roughness measured, m - Y machining response - depth of cut exponent in mathematical model - 1 depth of cut exponent in surface roughness model - 2 depth of cut exponent in number of flaws model - feed rate exponent in mathematical model - 1 feed rate exponent in surface roughness model - 2 feed rate exponent in number of flaws model - grit size exponent in mathematical model - 1 grit size exponent in surface roughness model - 2 grit size exponent in number of flaws model  相似文献   

20.
An experimental analysis was undertaken on ball burnished mild steel and aluminium using a purpose built burnishing tool. The analysis was designed to assess the effects of burnishing feed, force and speed and the number of tool passes on the surface roughness and surface hardness of a mild steel and an aluminium workpiece. In some cases, experiments showed that improvements of as much as 70% in surface quality were obtained when varying the mix of parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号