首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two grades of WC–10 wt.%Co cemented carbide with or without addition of Cr3C2/VC grain growth inhibitor during liquid phase sintering were produced with the goal to investigate their reciprocating sliding friction and wear behaviour against WC–6 wt.%Co cemented carbide under unlubricated conditions. The tribological characteristics were obtained on a Plint TE77 tribometer using distinctive normal contact loads. The generated wear tracks were analyzed by scanning electron microscopy and quantified topographically using surface scanning equipment. The post-mortem obtained wear volumes were compared to the online assessed wear. Correlations between wear volume, wear rate and coefficient of friction on the one hand and sliding distance and microstructural properties on the other hand were determined, revealing a significant influence of Cr3C2/VC on the friction characteristics and wear performance.  相似文献   

2.
The effects of rare earth oxide CeO2 on the microstructure and wear resistance of thermal sprayed Fe–Ni–Cr alloy coatings were investigated. The powders of Fe–Ni–Cr alloy with the addition of CeO2 were flame sprayed on to a 1045 carbon steel substrate. The coatings were examined and tested for microstructure feature, compositions, and phase structure. Tribological properties of coatings were tested under reciprocating sliding test. The results were compared with those for coatings of the alloy without CeO2. The comparison indicated that the addition of rare earth oxide CeO2 could refine and purify the microstructure of coatings, and increase the microhardness of the coatings. As a result, by CeO2 addition, the friction coefficient of the coatings was decreased slightly and the wear resistance of the coatings was enhanced significantly.  相似文献   

3.
ZrO2–Y2O3 ceramic coatings were deposited on AISI 304 stainless steel by both a low-pressure plasma spraying (LPPS) and a laser-assisted plasma hybrid spraying (LPHS). Microstructure and tribological characteristics of ZrO2–Y2O3 coatings were studied using an optical microscope, a scanning electron microscope, and an SRV high-temperature friction and wear tester. The LPHS coatings exhibit distinctly reduced porosity, uniform microstructure, high hardness and highly adhesive bonding, although more microcracks and even vertical macrocracks seem to be caused in the LPHS coatings. The ZrO2 lamellae in the LPHS coatings before and after 800°C wear test consist mainly of the metastable tetragonal (t′) phase of ZrO2 together with small amount of c phase. The t′ phase is very stable when it is exposed to the wear test at elevated temperatures up to 800°C for 1 h. The friction and wear of the LPHS coatings shows a strong dependence on temperature, changing from a low to a high wear regime with the increase of temperature. At low temperatures, friction and wear of the LPHS coatings is improved by laser irradiation because of the reduced connected pores and high hardness in contrary to the LPPS coating. However, at elevated temperatures, the friction and wear of the LPHS coatings is not reduced by laser irradiation. At room temperature, mild scratching and plastic deformation of the LPHS coatings are the main failure mechanism. However, surface fatigue, microcrack propagation, and localized spallation featured by intersplat fracture, crumbling and pulling-out of ZrO2 splats become more dominated at elevated temperatures.  相似文献   

4.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

5.
This study investigates the influence of sliding speed and normal load on the friction and wear of plasma-sprayed Cr2O3 coatings, in dry and lubricated sliding against AISI D2 steel. Friction and wear tests were performed in a wide speed range of 0.125–8 m/s under different normal loads using a block-on-ring tribometer. SEM, EDS and XPS were employed to identify the mechanical and chemical changes on the worn surfaces. A tangential impact wear model was proposed to explain the steep rising of wear from the minimum wear to the maximum wear. The results show that the wear of Cr2O3 coatings increases with increasing load. Secondly, there exist a minimum-wear sliding speed (0.5 m/s) and a maximum-wear sliding speed (3 m/s) for a Cr2O3 coating in dry sliding. With the increase of speed, the wear of a Cr2O3 coating decreases in the range 0.125–0.5 m/s, then rises steeply from 0.5 m/s to 3 m/s, followed by a decrease thereafter. The large variation of wear with respect to speed can be explained by stick-slip at low speeds, the tangential impact effect at median speeds and the softening effect of flash temperature at high speeds. Thirdly, the chemical compositions of the transfer film are a-Fe2O3 in the speed range 0.25–2 m/s, and FeO at 7 m/s. In addition, the wear mechanisms of a Cr2O3 coating in dry sliding versus AISI D2 steel are adhesion at low speeds, brittle fracture at median speeds and a mixture of abrasion and brittle fracture at high speeds. Finally the lubricated wear of Cr2O3 coating increases sharply from 1 to 2.8 m/s.  相似文献   

6.
TiN and TiAlN thin hard coatings have been widely applied on machine components and cutting tools to increase their wear resistance. These coatings have different wear behaviors, and determination of their wear characteristics in high-temperature and high-speed applications has great importance in the selection of suitable coating material to application. In this article, the wear behavior of single-layer TiN and TiAlN coatings was investigated at higher sliding speed and higher sliding distances than those in the literature. The coatings were deposited on AISI D2 cold-worked tool steel substrates using a magnetron sputtering system. The wear tests were performed at a sliding speed of 45 cm/s using a ball-on-disc method, and the wear area was investigated at seven different sliding distances (36–1,416 m). An Al2O3 ball was used as the counterpart material. The wear evolution was monitored using a confocal optical microscope and surface profilometer after each sliding test. The coefficient of friction and coefficient of wear were recorded with increasing sliding distance. It was found that the wear rate of the TiAlN coating decreases with sliding distance and it is much lower than that of TiN coating at longer sliding distance. This is due to the Al2O3 film formation at high temperature in the contact zone. Both coatings give similar coefficient of friction data during sliding with a slight increase in that of the TiAlN coating at high sliding distances due to the increasing alumina formation. When considering all results, the TiAlN coating is more suitable for hard machining applications.  相似文献   

7.
H. Kato   《Tribology International》2008,41(8):735-742
This study is the first to show a quantitative condition required for the establishment of severe–mild wear transition with sliding distance, by studying the effects of supply of Fe2O3 particles onto rubbing steel surfaces on the transition and oxide film formation process. The supply of fine Fe2O3 particles was found to accelerate the wear transition, and the sliding distance at which the transition occurs was found to increase with particle diameter and applied load. Oxide films are produced on the rubbing surfaces by sintering of the supplied Fe2O3 oxide particles. At the severe–mild wear transition, the relative area of oxide films is the same for all diameters of supplied Fe2O3 particles. This finding suggests that the transition occurs when the relative area of oxide films reaches a specific value, which is proportional to the area of real contact.  相似文献   

8.
This paper studies experimentally the effects of CO2 laser-treatment on the wear behaviour of plasma-sprayed Al2O3 coatings, in linear contact sliding (dry, abrasive and lubricated) against SAE 4620 steel. Tests were carried out using a block-on-ring friction and wear tester, under different loads at different speeds. The wear mechanism and the changes in adherence, porosity and microstructure by laser treatment were also investigated. Results show a better wear behaviour for both laser-treated ceramic coating and its paired steel under dry and abrasive conditions, compared with the case without laser treatment. The lubricated wear behaviour of the laser-treated ceramic coating, however, is not improved. The changes in microhardness, porosity and adherence caused by the laser treatment are responsible for the change in wear behaviour of the ceramic coating.  相似文献   

9.
The tribological behaviour of SiC, SiC–TiC and SiC–TiC–TiB2 was determined in oscillating sliding against SiC and α-Al2O3 in water at room temperature. The tribo-systems with the composite materials containing TiC and TiB2 differ significantly from the systems with the single phase SiC: The wear is reduced and the friction is increased. The wear reduction up to a factor of 10 is mainly due to the formation of an oxide film containing titanium oxides which is soft, stable in water and well adhering to the bulk material. This oxide film is transferred to the alumina ball but not to the silicon carbide ball.  相似文献   

10.
In the present investigation, Ni–WC composite powder was modified with the addition of CeO2 in order to form a new composition of Ni–WC–CeO2. The Ni–WC and Ni–WC–CeO2 compositions were used for coating deposition by high-velocity oxy-fuel (HVOF) spraying process so as to study the effect of CeO2 addition on microstructure, distribution of various elements, hardness, formation of new phases, and abrasive wear behavior. Further, the effect of load, abrasive size, sliding distance, and temperature on abrasive wear behavior of these HVOF-sprayed coatings was investigated by response surface methodology. To investigate the abrasive wear behavior of HVOF-sprayed coatings four factors such as load, abrasive size (size in micrometers), sliding distance (meters), and temperature (°C) with three levels of each factor were investigated. Analysis of variance was carried out to determine the significant factors and interactions. Investigation showed that the load, abrasive size, and sliding distance were the main significant factors while load and abrasive size, load and sliding distance, abrasive size and sliding distance were the main significant interactions. Thus an abrasive wear model was developed in terms of main factors and their significant interactions. The validity of the model was evaluated by conducting experiments under different wear conditions. A comparison of modeled and experimental results showed 4–9% error. The abrasive wear resistance of coatings increases with the addition of CeO2. This is due to increase in hardness with the addition of CeO2 in Ni–WC coatings.  相似文献   

11.
This paper studies the friction and wear behaviour of two important bearing materials, Thordon XL and LgSn80, in dry and lubricated sliding vs. plasma-sprayed Cr2O3 coatings. As a reference, AISI 1043 steel is also studied under the same conditions. SEM, EDS and surface topography were employed to study the wear mechanisms. The results indicate that the Thordon XL/Cr2O3 coating pair gives the lowest dry friction coefficient (0.16) under a normal load of 45.3 N (pressure 0.453 MPa) at a velocity of 1 m/s. The dry friction coefficient of Thordon XL/Cr2O3 coating increases to 0.38 under a normal load of 88.5 N (pressure 0.885 MPa). The dry friction coefficients of the LgSn80/Cr2O3 coating are in the range of 0.31–0.46. Secondly, both dry wear rate under low normal load (45.3 N) and lubricated wear rate under a load of 680 N for Thordon XL are lower than those of LgSn80 in sliding against plasma-sprayed Cr2O3 coatings at a speed of 1 m/s. However, under a normal load of 88.5 N the dry wear rate of Thordon XL is much higher than that of LgSn80. Thirdly, a high viscosity lubricant (SAE 140) leads to lower wear for Thordon XL and LgSn80 than a low viscosity lubricant (SAE 30). Finally, the dominating wear mechanism for Thordon XL is shear fracture when against the plasma-sprayed Cr2O3 ceramic coating. For LgSn80 against plasma-sprayed Cr2O3 ceramic coating, abrasive wear is the governing failure mechanism.  相似文献   

12.
Tribological behaviors of plasma-sprayed conventional and nanostructured Cr2O3-3%TiO2 ceramic coatings (i.e., CC3T and NC3T, respectively) using pin on disc type dry sliding and pot type slurry erosion test were investigated in the present work. The experimental results indicated that there were two main wear mechanisms, plastic smearing and adhesive tearing, in the worn coatings under dry sliding. Plastic smearing corresponded to a lower average friction coefficient and wear rate, while adhesive tearing corresponded to higher values. The erosive environment selected for the slurry erosion experiments include 10, 20 and 30% of SiO2 slurry concentrations in water with particle size 75-106 μm. The main damage mechanism observed in all the coatings submitted to slurry erosion were the formation and propagation of brittle cracks resulting in the detachment of coating surface material. Microstructural investigation was also carried to investigate the wear and erosion mechanism of the coatings using FE-SEM and EDS analysis. Properties like microhardness and porosity were also investigated for these coatings. Tribological performance of NC3T was better as compared to CC3T as observed in the present work.  相似文献   

13.
Fei Zhou  Yuan Wang  Feng Liu  Yuedong Meng  Zhendong Dai 《Wear》2009,267(9-10):1581-1588
It is evident that the micro-arc oxidation (MAO) ceramic coatings often exhibit relatively high friction coefficients as sliding against many mating materials. To reduce the friction coefficient for the MAO coatings, the duplex MAO/CrN coatings were deposited on 2024Al alloy using combined micro-arc oxidation and reactive radio frequency magnetron sputtering. The microstructure and phase of the duplex coatings were observed and determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The friction and wear behaviors of the duplex coatings sliding against Si3N4 balls in air, water and oil were investigated using a ball-on-disk tribometer. The wear rate of the duplex coating was determined by non-contact optical profilometer and the wear tracks on the duplex coatings were observed by SEM. The results showed the CrN coatings mainly consisted of Cr, CrN and Cr2N phases. The duplex coatings/Si3N4 tribopair exhibited the highest friction coefficient in air, while displayed the lowest friction coefficient in oil. When the normal load and the sliding speed increased, the friction coefficient in air increased from 0.65 to 0.72, whereas decreased from 0.58 to 0.36 in water and 0.20 to 0.08 in oil. The specific wear rates for the duplex coatings in air were higher than those in oil. In comparison to the MAO coatings, the duplex MAO/CrN coatings displayed excellent tribological properties under the same conditions.  相似文献   

14.
In this study, dry sliding metal–metal and metal–abrasive wear behaviours of the aluminium matrix hybrid composites produced by pressure infiltration technique were investigated. These composites were reinforced with 37 vol% Al2O3 and 25 vol% SiC particles and contained up to 8 wt% Mg in their matrixes. While matrix hardness and compression strength increased, amount of porosity and impact toughness decreased with increasing Mg content of the matrix. Metal–metal and metal–abrasive wear tests revealed that wear resistance of the composites increased with increasing Mg addition. On the other hand, abrasive resistance decreased with increasing test temperature, especially above 200 °C.  相似文献   

15.
《Wear》1997,212(2):244-253
The usefulness of WCCo cermets as wear resistant material for coatings is determined by the cladding technique employed. This paper compares the features of an 83% WCCo coating on an AISI 1043 steel substrate using two different application techniques: plasma spraying and laser cladding. Results show significantly less porosity, improved coating hardness and better layer-substrate adherence in laser cladded than in plasma sprayed coatings. This causes them to have different wear behaviour which was determined using a method developed on the basis of the PV factor theory using sliding linear contact of flat-cylinder type. The method proved that wear rate (Vd′) is directly proportional to the product of coefficient of friction (μ), load (C) and applied speed (V), Vd′ = KμCV, where proportionality constant, K, is different for every material and depends on conditions such as lubrication, temperature, etc. To study wear behaviour, laser cladded and plasma sprayed 83% WC-Co coatings, under extreme lubrication, were placed against a hardened and tempered AISI 1043 steel, at different load and sliding speed rates. As a result constant K was estimated for each coating. The tests also showed that wear rate in laser deposited coatings is approximately 34% lower than in plasma sprayed coatings.  相似文献   

16.
Due to their improved hardness and toughness properties, nano-crystalline materials have become attractive for a wide variety of applications. However, as the processing of nano-crystalline materials is quite expensive, efforts have been made to develop coatings using nano-crystalline grains. The present study investigates the ambient temperature friction behaviour of Cr3C2–25(Ni20Cr) coatings with nano-crystalline grains (CNG). In the technical process, both, Cr3C2–25(Ni20Cr) coatings with conventional grains (CCG), and nano-crystalline grains were deposited using an HVOF technique. Micro-structural characteristics and mechanical properties of the coatings were determined. Friction behaviour of the coatings as a function of different test conditions was evaluated. The specimens worn were examined by a scanning electron microscope (SEM). The results showed that the coefficient of friction of the CNG against 100Cr6 steel is lower than that of CCG against 100Cr6 steel. The principal types of material removal of CNG on the one hand, and CCG on the other, differ. Maps showing the prevalence of different wear mechanisms for different wear conditions were established for both types of coatings.  相似文献   

17.
Herein we show that dry sliding, in air, in the 25–550 °C temperature range, of the novel Ta2AlC/20 vol.% Ag and Cr2AlC/20 vol.% Ag composites against Ni-based superalloys (SAs) and alumina led to the formation of steady-state tribofilms whose thicknesses and compositions varied depending on sliding conditions. At elevated temperatures, under both isothermal and thermocyclic conditions, relatively thick (>0.5 μm) well-compacted “glaze” lubricious tribofilms were developed as a result of joint action of tribo-chemical and tribo-mechanical factors involving repeated tribo-oxidation, mixing, fracturing, sintering, etc. They were mainly composed of oxidized constituents from both counterparts (if slid vs. SA) or solely from MAX-Ag ones (vs. Al2O3) and possessed a fine multi-layered microstructure, i.e. a more oxidized thin outermost layer and a less oxidized carbide-containing thicker inner layer. During thermocycling the tribofilms adapted to 25–550 °C temperature variations and preserved their primary macro- and microstructure, hardness, good adhesion to the matrix and lubricating characteristics. Consequently, the tribological properties of MAX-Ag/SA tribocouples did not deteriorate, but slightly improved with sliding distance. A possible mechanism of tribofilm generation and their transformations at various temperatures is discussed. The effect of SA and alumina counterparts on the formation and degradation of the tribofilms are also discussed.  相似文献   

18.
19.
In order to overcome the disadvantages generated by the loosened nanoparticle agglomerates dispersed in polymer composite coatings, nano-TiO2 particles are modified using trifluoracetic acid. The friction and wear properties of the phenolic coatings filled with different surface treated nano-TiO2, sliding against AISI-C-52100 steel ring under dry sliding, were investigated on a MHK-500 wear tester. Owing to the effective improvement of their dispersibility in the phenolic coating, compared with the cases of untreated nano-TiO2, the employment of modified nano-TiO2 provided the phenolic coating with much better tribological performance. Worn surfaces of the untreated nano-TiO2 or modified nano-TiO2 filled phenolic coating and transfer films formed on the surface of the counterpart ring sliding against the composite coating were respectively investigated by SEM and optical microscope (OM), from which it is assumed that the optimal content of TiO2 or TF-TiO2 is able to enhance the adhesion of the transfer films to the surface of counterpart ring. As a result, the wear resistance of the phenolic composite coating filled with modified nano-TiO2 was significantly enhanced, especially at extreme wear conditions, i.e. high contact pressures.  相似文献   

20.
The wear phenomenon of metals under dry sliding is, generally, divided into two modes of severe and mild wear. A discontinuous transition between the wear modes often takes place in a certain load range. The T1-transition is usually observed at lower levels of load or sliding velocity. There is a great difference in wear rate between severe and mild wear. This indicates that the occurrence of severe wear should be avoided, especially in the field of machine design to prevent energy loss, occurrence of noise and vibration, and life reduction of machines and their components. Therefore, it is important for machine designers to know the relationship between friction and wear and the difference in properties of the wear surfaces in the two wear modes. In this study, wear tests of 0.35% C steel in contact with itself under constant load were conducted in moist air at various contact loads under dry sliding. The friction and wear were measured continuously throughout each test. After the tests, the relationship between friction and wear and the difference in properties of the wear surfaces were investigated in each wear mode. From the results, the upper and lower critical loads (Pacr and PAcr) appeared between severe and mild wear. The phenomenon of zero wear has been newly found in the early period at very low loads. The zero wear continued for a long sliding distance and then changes to mild wear. The critical load between zero wear and mild wear is defined as Pzerowear. The load was changed once in a step-wise manner from low to high levels in process of test. Since the rubbing history under mild wear condition at the low load in the first stage affected the properties of wear surface, the wear mode at the high load in the second stage changed from ‘mild wear’ to ‘quasi-mild wear’ having a low rate. From the relationship between sliding distance necessary for the appearance of quasi-mild wear and contact load in the first stage, the boundary curve between severe wear and quasi-mild wear in the second stage is hyperbolic. This curve gradually approaches Pzerowear with decreasing contact load. Thus, Pzerowear is one of the important critical loads for elucidating the test results under varying load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号