首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-iu m-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

2.
Lipopolysaccharide is known to stimulate production of nitrite via expression of inducible nitric oxide (NO) synthase in not only macrophages but also glial cells. We found that in glial cell cultures lipopolysaccharide-stimulated inducible NO synthase expression and nitrite accumulation were synergistically enhanced by pretreatment with endothelin, whereas endothelin itself did not induce these responses. Pretreatment with endothelin-1, endothelin-3, and the selective endothelin type B (ETB) receptor agonist IRL 1620 caused the same effect with similar potencies, suggesting that the synergism was mediated via the endothelin ETB receptor. A protein kinase C inhibitor, calphostin C, suppressed endothelin-3-enhanced inducible NO synthase expression. Pretreatment with either endothelin-3 or phorbol ester enhanced lipopolysaccharide-induced production of tumor necrosis factor-alpha (TNF-alpha). Simultaneous addition of TNF-alpha increased lipopolysaccharide-stimulated inducible NO synthase expression. These results suggest that the increase in inducible NO synthase expression by endothelin was due to the elevated TNF-alpha production via protein kinase C. Our findings present the possibility that endothelin is implicated in neurotoxicity via enhancement of inducible NO synthase expression.  相似文献   

3.
4.
Cytokine-stimulated astrocytes and macrophages are potent producers of nitric oxide (NO), a free radical proposed to play an important role in organ-specific autoimmunity, including demyelinating diseases of the central nervous system. The aim of this study was to investigate effects of pentoxifylline (PTX), a phosphodiesterase inhibitor with immunomodulatory properties, on NO production and inducible NO synthase (iNOS) mRNA expression in rat astrocytes and macrophages. We have shown that PTX affects cytokine (interferon-gamma, IFN-gamma; interleukin-1, IL-1; tumour-necrosis factor-alpha, TNF-alpha)-induced NO production in both cell types, but in the opposite manner--enhancing in astrocytes and suppressive in macrophages. While PTX did not have any effect on enzymatic activity of iNOS in activated cells, expression of iNOS mRNA was elevated in astrocytes and decreased in macrophages treated with cytokines and PTX. Treatment with PTX alone affected neither NO production nor iNOS mRNA levels in astrocytes or macrophages. This study indicates involvement of different signalling pathways associated with iNOS induction in astrocytes and macrophages, thus emphasizing complexity of regulation of NO synthesis in different cell types.  相似文献   

5.
6.
BACKGROUND: Nitric oxide (NO) is synthesized by inducible nitric oxide synthase (iNOS) and plays an important role in tumor growth and angiogenesis. NO generation by iNOS also influences the cytotoxicity of macrophages and tumor-induced immunosuppression. Before now, the expression of iNOS in prostate carcinoma tissue had not been determined. METHODS: In this study, tissue sections from 16 patients with prostate carcinoma were studied immunohistochemically and compared with tissue specimens from 10 patients with benign hyperplasia. RESULTS: Positive iNOS immunostaining was detected in all sections from patients with prostate carcinoma. The malignant epithelial cells were highly positive. The antibody against iNOS also marked round cells, which had the same cell shape as that observed for macrophages. These cells were located in stroma and epithelium adjacent to tumor islets. However, round cells in benign tissue stained negative for iNOS. None of the benign hyperplasia specimens stained positive for iNOS immunohistochemically. CONCLUSIONS: Prostate carcinoma tissue had a high iNOS content, whereas benign tissue did not. The authors suggest that epithelial iNOS expression can be used as a specific immunohistochemical marker for prostate carcinoma. NO generation by iNOS may play multiple roles in the development of this disease.  相似文献   

7.
Nitric oxide (NO), generated by inducible NO synthase (iNOS) in migrating macrophages, is increased in glomerulonephritis. This study investigates the effect of NO inhibition on rat nephrotoxic nephritis (NTN) to clarify the role of NO production in glomerular damage. NTN was induced in Sprague Dawley rats by an injection of an anti-glomerular basement membrane (GBM) antibody. Urinary nitrite excretion and nitrite release from kidney slices (5.47 +/- 1.19 versus 2.15 +/- 0.73 nmol/mg protein, NTN versus Control, P < 0.05) were increased in NTN on day 2. Glomerular macrophage infiltration and intercellular adhesion molecule (ICAM)-1 expression increased from day 2. iNOS expression was increased in interstitial macrophages. Glomerular endothelial cell NOS (ecNOS) expression evaluated by counting immunogold particles along GBM was suppressed (0.06 +/- 0.02 versus 0.35 +/- 0.04 gold/micron GBM, P < 0.0001). Glomerular damage developed progressively. NG-nitro-L-arginine methyl ester (L-NAME), which inhibits both iNOS and ecNOS and aminoguanidine (AG), a relatively selective inhibitor for iNOS, equally suppressed nitrite in urine and renal tissue. Glomerular ICAM-1 expression and macrophage infiltration were reduced by L-NAME, but not by AG. Expression of ecNOS was significantly increased by L-NAME (0.91 +/- 0.08, P < 0.0001 versus NTN), but slightly by AG (0.18 +/- 0.04). AG significantly and L-NAME slightly attenuated the glomerular damage at day 4. In conclusion, suppression of iNOS prevents glomerular damage in the early stage of NTN. Treatment by L-NAME reduces macrophage infiltration by suppression of ICAM-1 expression, which may be explained by an increase in ecNOS expression.  相似文献   

8.
BACKGROUND: Plasma levels of adrenomedullin are increased in patients with congestive heart failure, but there has been no report concerning the effects of adrenomedullin on the heart. We investigated the effects of adrenomedullin on NO synthase activity in cardiac myocytes. METHODS AND RESULTS: We measured the production of nitrite, a stable metabolite of NO, in cultured neonatal rat cardiac myocytes with the Griess reagent. Inducible NO synthase mRNA and protein expression were assayed by Northern and Western blotting, respectively. Incubation of the cultures with interleukin-1 beta (10 ng/mL) for 24 hours caused a significant increase in nitrite accumulation. Adrenomedullin significantly augmented nitrite production by interleukin-1 beta-stimulated but not by unstimulated cardiac myocytes in a dose-dependent manner (10(-10) to 10(-6) mol/L). The adrenomedullin-induced nitrite production by interleukin-1 beta-stimulated cells was accompanied by increased inducible NO synthase mRNA and protein expression. In the presence of dibutyryl cAMP, the interleukin-1 beta-induced nitrite accumulation was increased further, but the stimulatory effect of adrenomedullin on nitrite production was abolished. Adrenomedullin dose-dependently increased intracellular cAMP levels in cardiac myocytes. Addition of the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP[8-37] to the culture dose-dependently inhibited both cAMP and NO generation stimulated by adrenomedullin. CONCLUSIONS: These results indicate that adrenomedullin acts on cardiac myocytes and augments NO synthesis in these cells under cytokine-stimulated conditions, at least partially through a cAMP-dependent pathway.  相似文献   

9.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. Arabidopsis thaliana seedlings lacking one of the phytochromes, phyB, have elongated hypocotyls and other tissues, suggesting that they may have an alteration in hormone physiology. We have studied the possibility that phyB mutations affect seedling gibberellin (GA) perception and metabolism by testing the responsiveness of wild-type and phyB seedlings to exogenous GAs. The phyB mutant elongates more than the wild type in response to the same exogenous concentrations of GA3 or GA4, showing that the mutation causes an increase in responsiveness to GAs. Among GAs that we were able to detect, we found no significant difference in endogenous levels between wild-type and phyB mutant seedlings. However, GA4 levels were below our limit of detectability, and the concentration of that active GA could have varied between wild-type and phyB mutant seedlings. These results suggest that, although GAs are required for hypocotyl cell elongation, phyB does not act primarily by changing total seedling GA levels but rather by decreasing seedling responsiveness to GAs.  相似文献   

10.
Phospholipids are the major constituents of cell membranes, and have numerous structural and functional roles in the nervous system. Although the metabolic pathways responsible for the syntheses of the phosphatides phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), and phosphatidylserine (PtdSer) are well understood, the mechanisms controlling these pathways in neural tissue have not been fully characterized. Recent studies have suggested that the main factors controlling PtdCho and PtdEtn synthesis by the Kennedy cycle tend to be the intracellular levels of key substrates for the biosynthetic enzymes, or changes in the activities of the rate-limiting enzymes. Moreover, different control mechanisms may operate, depending upon the functional state of the tissue.  相似文献   

11.
12.
Focal cerebral ischemia is associated with expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), enzymes whose reaction products contribute to the evolution of ischemic brain injury. We tested the hypothesis that, after cerebral ischemia, nitric oxide (NO) produced by iNOS enhances COX-2 activity, thereby increasing the toxic potential of this enzyme. Cerebral ischemia was produced by middle cerebral artery occlusion in rats or mice. Twenty-four hours after ischemia in rats, iNOS-immunoreactive neutrophils were observed in close proximity (<20 micrometer) to COX-2-positive cells at the periphery of the infarct. In the olfactory bulb, only COX-2 positive cells were observed. Cerebral ischemia increased the concentration of the COX-2 reaction product prostaglandin E2 (PGE2) in the ischemic area and in the ipsilateral olfactory bulb. The iNOS inhibitor aminoguanidine reduced PGE2 concentration in the infarct, where both iNOS and COX-2 were expressed, but not in the olfactory bulb, where only COX-2 was expressed. Postischemic PGE2 accumulation was reduced significantly in iNOS null mice compared with wild-type controls (C57BL/6 or SV129). The data provide evidence that NO produced by iNOS influences COX-2 activity after focal cerebral ischemia. Pro-inflammatory prostanoids and reactive oxygen species produced by COX-2 may be a previously unrecognized factor by which NO contributes to ischemic brain injury. The pathogenic effect of the interaction between NO, or a derived specie, and COX-2 is likely to play a role also in other brain diseases associated with inflammation.  相似文献   

13.
In the present study, we tested the hypothesis that lipopolysaccharide (LPS)-induced expression of nitric oxide synthase (iNOS) by splenocytes is modulated through the activation of endogenous opioids in the central nervous system. The initial studies determined the parameters of LPS-induced expression of iNOS by splenocytes. Rats were injected with LPS at doses of 0, 1, 10, 100, and 1000 microg/kg, and measures of both iNOS mRNA and protein showed a dose-dependent increase in expression. In a time course study, rats received 100 microg/kg LPS and were killed at 0, 2, 4, 8, and 16 h postinjection. Both iNOS mRNA and protein expression was detectable at the 2-h time point, with peak expression occurring at 8 h. To evaluate the involvement of endogenous opioids, the opioid receptor antagonist naltrexone was administered at 0, 0.1, 1, or 10 mg/kg s.c. in combination with LPS (100 microg/kg), with a second injection of naltrexone at the same dose 4 h after the injection of LPS. Naltrexone induced a pronounced dose-dependent reduction in iNOS mRNA and protein expression by splenocytes. The modulation of iNOS expression occurs via central opioid receptors as intracerebroventricular administration but not peripheral administration of N-methylnaltrexone, the quaternary form of naltrexone that does not readily cross the blood-brain barrier, reduced the expression of iNOS. For all of the manipulations, nitrite/nitrate levels in the plasma showed effects similar to those for iNOS mRNA and protein. Collectively, these findings indicate that central opioid receptors are involved in the in vivo regulation of splenic nitric oxide production.  相似文献   

14.
Twelve Standardbred foals (age 3-6 months), with little previous exposure to parasites, were allocated to 2 groups and put onto pasture with low (Group L) or high (Group H) levels of larval contamination of large strongyles and cyathostomes. After 4 weeks grazing in September, the foals were housed indoors until necropsy 15 weeks later. Foals in Group H became clinically more affected than those of Group L in that they showed loss of vigour, weight gain depression, intermittent soft faeces and inappetence. One foal of Group H had persistent diarrhoea and was subjected to euthanasia 12 weeks after housing. Signs of colic were not observed. Faecal egg counts were significantly higher in Group H than in Group L (P<0.05). At necropsy, the mean number of S. vulgaris and cyathostomes was 20 and 18,000, respectively, in Group L, and 167 and 25,000 in Group H. Routine blood chemistry did not specifically reveal presence of S.vulgaris in pre-patency. A transient neutrophilia and eosinophilia, most prominent in Group H, was seen 2-8 weeks after start of exposure and anaemia was observed later in Group H. Serum albumin and albumin/globulin ratio were reduced, particularly in Group H, and a marked hyperbetaglobulinaemia was observed at 16-20 weeks in Group H. In conclusion, heavy infections with strongyles including S. vulgaris may become established in weaned foals after a brief period on pasture. Infections may be expressed clinically as debilitation, inappetence and intermittent diarrhoea without colic, and the need for control is imperative.  相似文献   

15.
16.
In order to determine the effect of kappa-opioid receptor agonist on the beta1-adrenoceptor stimulation in the heart, the effects of norepinephrine (NE), a beta1-adrenoceptor agonist, on contraction and electrically induced intracellular calcium ([Ca2+]i) transient in the single rat ventricular myocyte pretreated with a kappa-opioid receptor agonist, trans-(+/-)-3, 4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl)-benzeneacetamide (U50,488H), at 0.01-1 microM were studied with a video edge tracker method and a spectrofluorometric method using fura-2 as calcium indicator, respectively. NE at 0.01-10 microM augmented both twitch amplitude and electrically induced [Ca2+]i transient dose-dependently, which were abolished by propranolol at 1 microM, a beta-adrenoceptor antagonist. The effects of NE on both contraction and [Ca2+]i transient were attenuated in a dose-dependent manner by U50,488H at 0.01-1 microM, which itself had no effect at all. The maximum response ( Emax) was decreased, while the concentration that produces 50% of the maximum response (EC50) was enhanced, by U50, 488H. The inhibitory effects of U50,488H on beta-adrenoceptor stimulation were completely blocked by pretreatment with norbinaltorphimine, a specific kappa-opioid receptor antagonist at 1 microM, or preincubation with pertussis toxin (PTX) at 200 ng/ml for 6 h. On the other hand, the inhibition on NE-induced augmentation in electrically induced [Ca2+]i transient by U50,488H was not affected by pretreatment with U73122, a specific inhibitor of phospholipase C (PLC), at 10 microM for 30 min. U50,488H attenuated the augmentation of the electrically stimulated [Ca2+]i transient induced by forskolin at 0.1 and 0.5 microM. It did not, however, affect the augmentation of the electrically induced [Ca2+]i transient by N6, 2'-O-dibutyryl adenosine cyclic monophosphate (DB-cAMP). The results suggest that kappa-opioid receptor stimulation by U50,488H at 10(-6 )M or lower may inhibit the effects of beta-adrenoceptor stimulation by acting at a PTX-sensitive G-protein and AC, but not via the phosphoinositol pathway.  相似文献   

17.
To investigate the pathobiology of severe acute pancreatitis, we studied the expression of inducible nitric oxide synthase (iNOS) in peritoneal macrophages of experimental pancreatitis. Taurocholate (TCA) pancreatitis and cerulein (CE) pancreatitis were used as models of lethal and self-limited pancreatitis, respectively, and the mechanism of iNOS expression in peritoneal macrophages was studied. Serum nitrate and nitrite (NOx) concentrations increased during the course of TCA pancreatitis, and iNOS-immunoreactivity was detected in the peritoneal macrophages 12 h after the induction of TCA pancreatitis, but these phenomena were not observed in CE pancreatitis. Despite the difference in the iNOS expression, the iNOS messenger RNA (mRNA) and the activation of nuclear factor-kappa B (NF-kappa B) were detected in the peritoneal macrophages of both pancreatitis models. The supernatant of TCA pancreatitis ascites could induce iNOS in the peritoneal macrophages of normal rats in vitro, but the peritoneal lavage fluid of CE pancreatitis rats could not. The results indicated that there may be qualitative or quantitative differences in the macrophage activation between the two types of experimental pancreatitis and suggested that the ascites of rats with lethal acute pancreatitis contains some soluble factors that activate the macrophage/monocyte system and cause an overproduction of NO by the iNOS expression.  相似文献   

18.
BACKGROUND: The role of nitric oxide synthase in myocardial ischemia-reperfusion injury is complex. Our hypothesis was that inducible nitric oxide synthase has a role in the regulation of coronary flow after ischemia. METHODS: Four groups of isolated blood-perfused rabbit hearts underwent sequential periods of perfusion, ischemia, and reperfusion (20, 30, and 20 minutes). Two groups underwent 40 minutes of perfusion. Ischemic groups received saline vehicle, N omega-nitro-L-arginine methyl ester (L-NAME) or the highly specific inducible nitric oxide synthase inhibitor 1400W in low or high doses during reperfusion. Two nonischemic groups were treated with saline vehicle or 1400W during the last 20 minutes of perfusion. Left ventricular developed pressure and coronary flow were measured after each perfusion period. Ventricular levels of myeloperoxidase and cyclic guanosine monophosphate were measured at the end of the second perfusion period. RESULTS: Coronary flow was significantly increased in both 1400W groups versus L-NAME (p < 0.001) and in high-dose 1400W versus control (p < 0.001). Coronary flow was not significantly different between the nonischemic groups. Left ventricular developed pressure was not significantly different among the ischemic groups or between the two nonischemic groups. There were no differences in cyclic guanosine monophosphate levels in any of the ischemic hearts. Myeloperoxidase levels were significantly elevated in L-NAME versus high-dose 1400W, nonischemic 1400W, and nonischemic saline groups (p < 0.02). CONCLUSIONS: Highly selective inhibition of inducible nitric oxide synthase results in increased coronary flow after ischemia but not after continuous perfusion. This occurs with decreased neutrophil accumulation and a trend toward increased contractility without elevation of cyclic guanosine monophosphate levels.  相似文献   

19.
There is increasing evidence for a role for nitric oxide (NO) in the alloimmune response and induction of NO synthesis occurs during allograft rejection. The aim of this study was to investigate the source of NO synthesis in rejecting allografts. Localization of inducible nitric oxide synthase (iNOS) was studied by immunohistochemistry, in a rat model of acute renal allograft rejection, in unmodified Lewis recipients in which rejection is complete 7 days after transplantation of F1 hybrid Lewis-Brown Norway kidneys. High levels of iNOS expression were found in infiltrating mononuclear cells in glomeruli and interstitium of rejecting kidneys; there was no expression in parenchymal renal cells, or in control isografts of either rat strain. Expression of iNOS in the cortex was present from 4 to 6 days posttransplantation, and had declined by the 7th day, where expression was principally in the medulla. The pattern of iNOS staining was similar to ED1 staining, a marker for rat macrophages. These findings suggest that infiltrating macrophages in the graft reaction are a prominent source of NO; this iNOS expression supports a role for NO in the modulation of local allogeneic responses, and possibly as a mediator of cytotoxic graft damage.  相似文献   

20.
Type 1 CD4+-T-cell-mediated immunity is crucial for the resolution of chlamydial infection of the murine female genital tract. Previous studies demonstrating a correlation between CD4+-T-cell-mediated inhibition of chlamydial growth and gamma interferon (IFN-gamma)-mediated induction of nitric oxide synthase suggested a potential role for the nitric oxide (NO) effector pathway in the clearance of Chlamydia from genital epithelial cells by the immune system. To clarify the role of this pathway, the growth levels of Chlamydia trachomatis organisms in normal (iNOS+/+) mice and in genetically engineered mice lacking the inducible nitric oxide synthase (iNOS) gene (iNOS-/- mice) were compared. There was no significant difference in the course of genital chlamydial infections in iNOS+/+ and iNOS-/- mice as determined by recovery of Chlamydia organisms shed from genital epithelial cells. Dissemination of Chlamydia to the spleen and lungs occurred to a greater extent in iNOS-/- than in iNOS+/+ mice, which correlated with a marginal increase in the susceptibility of macrophages from iNOS-/- mice to chlamydial infection in vitro. However, infections were rapidly cleared from all affected tissues, with no clinical signs of disease. The finding of minimal dissemination in iNOS-/- mice suggested that activation of the iNOS effector pathway was not the primary target of IFN-gamma during CD4+-T-cell-mediated control of chlamydial growth in macrophages because previous reports demonstrated extensive and often fatal dissemination of Chlamydia in mice lacking IFN-gamma. In summary, these results indicate that the iNOS effector pathway is not required for elimination of Chlamydia from epithelial cells lining the female genital tract of mice although it may contribute to the control of dissemination of C. trachomatis by infected macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号