首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
具有无功补偿功能的光伏并网发电对改善电网电压分布、降低网损及提高电网末端地区的供电质量、节省无功补偿设备投资具有重要作用。提出分区控制的思想用于光伏并网功率调节控制,给出了区域划分的基本原则,详细分析了光伏并网发电系统的运行区域及耦合电感的选择等问题,讨论了当光照条件不变时并网点电压变化对分区运行点的影响,并提出基于全微分思想的修正方法。通过算例模拟了分区控制的过程,结果表明,所提光伏发电系统并网后对配电网电压水平具有显著的改善作用,验证了分区控制方法的有效性。  相似文献   

2.
A method for evaluating the operation characteristic of grid-connected PV systems in multiple interconnection was proposed and a suppression of PV electric energy which is reduced by an automatic voltage control unit was estimated using a yearly scale simulation. The automatic voltage control unit is one of the PV inverter functions. In Japan, PV systems must be provided with this function to maintain within 101 V±6 V for the standard voltage of 100 V according to the technical recommendations. The automatic control voltage unit adjusts the distribution-line voltage at a connected point using leading reactive power or active power. Especially, the adjustment of active power will cause a suppression of PV electric energy.  相似文献   

3.
Single-stage grid-connected photovoltaic (PV) systems have advantages such as simple topology, high efficiency, etc. However, since all the control objectives such as the maximum power point tracking (MPPT), synchronization with the utility voltage, and harmonics reduction for output current need to be considered simultaneously, the complexity of the control scheme is much increased. This paper presents the implementation of a single-stage three-phase grid-connected PV system. In addition to realize the aforementioned control objectives, the proposed control can also remarkably improve the stability of the MPPT method with a modified incremental conductance MPPT method. The reactive power compensation for local load is also realized, so as to alleviate grid burden. A DSP is employed to implement the proposed MPPT controller and reactive power compensation unit. Simulation and experimental results show the high stability and high efficiency of this single-stage three-phase grid-connected PV system.  相似文献   

4.
在局部阴影的情况下,由于串联式光伏组件的输出特性不同而产生多个极值点,使得传统的最大功率追踪(maximum power point tracking, MPPT)方法陷入局部极值点而失效。文中提出一种针对两级并网光伏系统的改进电导增量法以适应光伏阵列在局部阴影下的多峰值最大功率跟踪,通过分析最大功率点电压的变化范围,设定最大功率电压搜索范围以提高搜索效率,并通过DC/DC Boost变换器占空比实现输入电压控制,保证算法不陷入局部极值点。最后利用仿真实验验证了该算法在有、无阴影情况下均能准确地跟踪光伏方阵最大功率,有效提高了光伏阵列输出效率。  相似文献   

5.
Solar power generation using PV (photovoltaic) technology is a key but still evolving technology with the fastest growing renewable-based market worldwide in the last decade. In this sector with tremendous potential for energy security and economic development, grid-connected PV systems are becoming today the most important application of solar PV generation. Based on this trend, PV system designers require an accurate and reliable tool in order to predict the dynamic performance of grid-tied PV systems at any operating conditions. This will allow evaluating the impact of PV generation on the electricity grids. This paper presents a detailed characterization of the performance and dynamic behavior of a grid-connected PV energy conversion system. To this aim, a flexible and accurate PV simulation and evaluation tool (called PVSET 1.0) is developed. The PV system is modeled, simulated and validated under the MATLAB/Simulink environment. The accuracy of simulation results has been verified using a 250 Wp PV experimental set-up.  相似文献   

6.
This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current.  相似文献   

7.
The aim of this article is to describe how closely PV grid-connected inverters (of around 5 kW) operate at the actual maximum power point. These inverters could be installed at any low voltage, PV grid-connected systems. To carry this study out, twelve 50 Hz single-phase inverters were selected from the European market. Each one of them was put into an outdoor grid-connected system installed in Spain. PV power generation with respect to irradiance, ambient temperature and local time was measured under different meteorological conditions. DC voltage and maximum power point tracking efficiency were analyzed. From the results obtained it has been possible to see that the MPPT algorithms used in some inverters do not bring the optimum utilisation of the PV array.  相似文献   

8.
光伏发电并网大电网面临的问题与对策   总被引:3,自引:1,他引:2  
妥善解决光伏发电系统接入大电网后2部分都能安全、高效运行是光伏发电技术大规模工业化应用的关键之一。分析了光伏发电系统及其并网的技术特点,简要阐述了光伏发电并网问题的研究现状。指出光伏发电大规模并网使大电网在研究与实验验证手段、对光伏发电系统影响大电网机理的认识、新型配电系统的规划、电网运行控制、电网监测保护与控制装备、技术标准与规范等方面面临新的问题,并提出了应对这些问题的策略。  相似文献   

9.
Grid-connected photovoltaic (PV) systems is one of the most promising applications of PV systems. Till now, no detailed studies have been carried out to assess the potential of grid-connected systems in Kuwait. This work investigates the feasibility of implementing grid-connected PV systems in the Kuwaiti climate. The proposed system consists of crystalline solar modules mounted on the building roof and an inverter to convert PV dc output to ac voltage. The building receives electricity from both the PV array and the utility grid. In this system, the load is the total electrical energy consumption in the building.The objective of this work is to examine the performance as well as the economic feasibility of grid-connected PV systems in the Kuwaiti climate. A program is written to evaluate the performance as well as the economic feasibility of such systems in Kuwait. The input to the program is the weather data for Kuwait, time dependent building loads, as well as the utility rates for Kuwait. Weather data generator subroutine included in the program is used to generate hourly weather conditions from the monthly average values of daily radiation on horizontal surface, and ambient temperature available for Kuwait. The five-parameter PV model, which is applicable to both crystalline and amorphous PV modules, is used to determine the performance of the solar modules used in this study.The transient simulation program ( ) is used to link the components of the grid-connected PV system together. The inverter efficiency is represented as a linear function of input power. In this case, it is assumed that the AC output from the system will never be greater than the building load. Electricity tariffs will have an important impact on the cost-effectiveness of the system studied. The tariff used for electric utility is a flat rate per unit kWh of electrical energy. Simulations of the proposed system were carried out over the academic year.The building examined in this study is a flat roof building with a single story. The building roof area is large enough so that the PV arrays can be spaced widely to minimize shading losses. Different array slopes, and azimuth angles were studied to maximize the annual energy generated by the PV modules. Finally, the economic feasibility of grid-connected PV systems in Kuwait are examined.  相似文献   

10.
This paper presents a transformer-less single-stage grid-connected solar photovoltaic (PV) system with active reactive power control. In the absence of active input power, grid-tied voltage source converter (VSC) is operated in the reactive power generation mode, which powers control circuitry and maintains regulated DC voltage. Control scheme has been implemented so that the grid-connected converter continuously serves local load. A data-based maximum power point tracking (MPPT) has been implemented at maximum power which performs power quality control by reducing total harmonic distortion (THD) in grid-injected current under varying environmental conditions. Standards (IEEE-519/1547) stipulates that current with THD greater than 5% cannot be injected into the grid by any distributed generation (DG) source. MPPT tracks actual variable DC link voltage while deriving maximum power from PV array and maintains DC link voltage constant by changing the converter modulation index. Simulation results with the PV model and MPPT technique validations demonstrate effectiveness of the proposed system.  相似文献   

11.
Because of their deployment in dispersed locations on the lowest voltage portions of the grid, photovoltaic (PV) systems pose unique challenges to power system engineers. Computer models that accurately simulate the relevant behavior of PV systems would thus be of high value. However, most of today's models either do not accurately model the dynamics of the maximum power point trackers (MPPTs) or anti-islanding algorithms, or they involve excessive computational overhead for this application. To address this need, a MATLAB/Simulink model of a single-phase grid-connected PV inverter has been developed and experimentally tested. The development of the PV array model, the integration of the MPPT with an averaged model of the power electronics, and the Simulink implementation are described. It is experimentally demonstrated that the model works well in predicting the general behaviors of single-phase grid-connected PV systems. This paper concludes with a discussion of the need for a full gradient-based MPPT model, as opposed to a commonly used simplified MPPT model.   相似文献   

12.
为实现电网电压不平衡时对T型三电平光伏并网系统输出功率和电流质量的控制,以达到入网功率平稳或电流正弦为控制目标,结合光伏阵列输出功率前馈,在两相静止坐标系下提出一种直流母线电压外环PI控制、并网电流内环有限集模型预测控制的控制策略,并在电压外环中引入2倍频陷波器以获得平滑的入网功率参考值。仿真结果表明:当电网电压不对称时,采用所提控制策略能够实现对入网有功、无功功率2倍频脉动及负序电流的分别抑制或协调控制,且并网电流谐波畸变小、入网电能质量高,同时实现T型三电平逆变器的中点电位平衡。  相似文献   

13.
This paper presents a grid-connected photovoltaic (PV) power conversion system based on a single-phase multilevel inverter. The proposed system fundamentally consists of PV arrays and a single-phase multilevel inverter structure. First, configuration and structural parts of the PV assisted inverter system are introduced in detail. To produce reference output voltage waves, a simple switching strategy based on calculating switching angles is improved. By calculated switching angles, the reference signal is produced as a multilevel shaped output voltage wave. The control algorithm and operational principles of the proposed system are explained. Operating PV arrays in the same load condition is a considerable point; therefore a simulation study is performed to arrange the PV arrays. After determining the number and connection types of the PV arrays, the system is configured through the arrangement of the PV arrays. The validity of the proposed system is verified through simulations and experimental study. The results demonstrate that the system can achieve lower total harmonic distortion (THD) on the output voltage and load current, and it is capable of operating synchronous and transferring power values having different characteristic to the grid. Hence, it is suitable to use the proposed configuration as a PV power conversion system in various applications.  相似文献   

14.
针对光伏并网系统中光伏微电源出力的波动性和间歇性,将蓄电池和超级电容器构成的混合储能系统HESS(hybrid energy storage system)应用到光伏并网系统中可以实现光伏功率平滑、能量平衡以及提高并网电能质量。在同时考虑蓄电池的功率上限和超级电容的荷电状态(SOC)的情况下,对混合储能系统提出了基于超级电容SOC的功率分配策略;该策略以超级电容的SOC和功率分配单元的输出功率作为参考值,对混合储能系统充放电过程进行设计。超级电容和蓄电池以Bi-direction DC/DC变换器与500 V直流母线连接,其中超级电容通过双闭环控制策略对直流母线电压进行控制。仿真结果表明,所提功率分配策略能对混合储能系统功率合理分配,而且实现了单位功率因数并网,稳定了直流母线电压。  相似文献   

15.
Traditional electric power systems are designed in large part to utilize large baseload power plants, with limited ability to rapidly ramp output or reduce output below a certain level. The increase in demand variability created by intermittent sources such as photovoltaic (PV) presents new challenges to increase system flexibility. This paper aims to investigate and emphasize the importance of the grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The investigation was conducted to critically review the literature on expected potential problems associated with high penetration levels and islanding prevention methods of grid tied PV. According to the survey, PV grid connection inverters have fairly good performance. They have high conversion efficiency and power factor exceeding 90% for wide operating range, while maintaining current harmonics THD less than 5%. Numerous large-scale projects are currently being commissioned, with more planned for the near future. Prices of both PV and balance of system components (BOS) are decreasing which will lead to further increase in use. The technical requirements from the utility power system side need to be satisfied to ensure the safety of the PV installer and the reliability of the utility grid. Identifying the technical requirements for grid interconnection and solving the interconnect problems such as islanding detection, harmonic distortion requirements and electromagnetic interference are therefore very important issues for widespread application of PV systems. The control circuit also provides sufficient control and protection functions like maximum power tracking, inverter current control and power factor control. Reliability, life span and maintenance needs should be certified through the long-term operation of PV system. Further reduction of cost, size and weight is required for more utilization of PV systems. Using PV inverters with a variable power factor at high penetration levels may increase the number of balanced conditions and subsequently increase the probability of islanding. It is strongly recommended that PV inverters should be operated at unity power factor.  相似文献   

16.
Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation, photovoltaic grid-connected systems are usually equipped with energy storage units. Most of the structures combined with energy storage are used as the DC side. At the same time, virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation. For the PV-storage grid-connected system based on virtual synchronous generators, the existing control strategy has unclear function allocation, fluctuations in photovoltaic inverter output power, and high requirements for coordinated control of PV arrays, energy storage units, and photovoltaic inverters, which make the control strategy more complicated. In order to solve the above problems, a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed. In this strategy, the energy storage unit implements maximum power point tracking, and the photovoltaic inverter implements a virtual synchronous generator algorithm, so that the functions implemented by each part of the system are clear, which reduces the requirements for coordinated control. At the same time, the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter. The simulation validates the effectiveness of the proposed method from three aspects: grid-connected operating conditions, frequency-modulated operating conditions, and illumination sudden-drop operating condition. Compared with the existing control strategies, the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.  相似文献   

17.
Nowadays, grid-connected photovoltaic (PV) systems constitute an emerging technology. This has given rise to concerns about their contribution to harmonic distortion levels in utility grids. Valuable insight into the electrical behavior of such a system, including its impact on power quality, can be obtained through extensive simulation studies. In this paper, models are developed with a focus on not only accurate but also fast simulation of grid-connected PV systems. First, time-consuming processes are identified and discussed. These are mainly associated with the semiconductor power switching devices and the non-linear characteristics of the system components (isolation transformer, PV generator). Next, models are developed in order to increase simulation speed by avoiding time-consuming procedures. The validity of the approach is ascertained by comparing simulation results with published measurements. A case study is then performed in order to obtain current and voltage waveforms and, subsequently, harmonic distortion levels. Further simulations are carried out using different values for various system parameters in order to make an assessment of their impact in terms of waveform distortion.  相似文献   

18.
一种多逆变器太阳能光伏并网发电系统的组群控制方法   总被引:4,自引:3,他引:1  
对光伏发电系统中的光伏阵列一逆变器对进行轮循分组控制,在逆变器输入功率小于设定的下限阈值时,部分光伏阵列并联后连接到一台逆变器输出;在并联开关分合闸过程中,一直保持光伏阵列以最大功率不问断输出;并且该方法对光照突变情况进行自适应判断,作为控制的预启动条件。此方法的优点是:能够同时提高逆变器和光伏阵列的转换效率,改善电能质量,降低并联开关和逆变器的动作次数,延长设备使用寿命,并且控制过程系统输出功率平稳。  相似文献   

19.
This paper presents a single stage transformer-less grid-connected solar photovoltaic (PV) system with an active and reactive power control. In the absence of active input power, the grid-tied voltage source converter (VSC) is operated in a reactive power generation mode, which powers the control circuitry, and maintains a regulated DC voltage to the VSC. A data-based maximum power point tracking (MPPT) control scheme which performs power quality control at a maximum power by reducing the total harmonic distortion (THD) in grid injected current as per IEEE-519/1547 standards is implemented. A proportional-integral (PI) controller based dynamic voltage restorer (DVR) control scheme is implemented which controls the grid side converter during single-phase to ground fault. The analysis includes the grid current THD along with the corresponding variation of the active and reactive power during the fault condition. The MPPT tracks the actual variable DC link voltage while deriving the maximum power from the solar PV array, and maintains the DC link voltage constant by changing the modulation index of the VSC. Simulation results using Matlab/Simulink are presented to demonstrate the feasibility and validations of the proposed novel MPPT and DVR control systems under different environmental conditions.  相似文献   

20.
This paper applies a new dynamical electrical array reconfiguration strategy on photovoltaic (PV) panels arrangement based on the connection of all PV panels on two parallel groups to reach the 24 V requested by the considered load and providing a maximum output current by connecting in series the two groups. If one of the PV panels or more are shaded, dusty or faulty the connection of the others in the same group will be automatically modified to maintain the requested load output voltage. This dynamical reconfiguration allows also limiting the lost power, due to the incriminate panel, by switching off this panels and reconfiguration the topology. As a result, a real time adaptation of a switch matrix allows a self-ability to maintain a constant load voltage. Moreover, a minimum number of PV panels are switched off by isolating the effect of unhealthy panels. In addition, the proposed solution can also be applied for identifying and locating the shaded, dusty and faulty panel. Experimental setup has been built and the results validate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号