首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lead-cooled reactor systems capable of accepting either zero or unity conversion ratio cores depending on the need to burn actinides or operate in a sustained cycle are presented. This flexible conversion ratio reactor is a pool-type 2400 MWt reactor coupled to four 600 MWt supercritical CO2 (S-CO2) power conversion system (PCS) trains through intermediate heat exchangers. The cores which achieve a power density of 112 kW/l adopt transuranic metallic fuel and reactivity feedbacks to achieve inherent shutdown in anticipated transients without scram, and lead coolant in a pool vessel arrangement. Decay heat removal is accomplished using a reactor vessel auxiliary cooling system (RVACS) complemented by a passive secondary auxiliary cooling system (PSACS). The transient simulation of station blackout (SBO) using the RELAP5-3D/ATHENA code shows that inherent shutdown without scram can be accommodated within the cladding temperature limit by the enhanced RVACS and a minimum (two) number of PSACS trains. The design of the passive safety systems also prevents coolant freezing in case all four of the PSACS trains are in operation. Both cores are also shown able to accommodate unprotected loss of flow (ULOF) and unprotected transient overpower (UTOP) accidents using the S-CO2 PCS.  相似文献   

3.
4.
This paper compares different types of TRU burners, sub-critical (as Accelerator-Driven Systems and Fusion Fission Hybrids) but also critical, low conversion ratio, fast reactors. To make a significant comparison, it is specified for which objective and within which strategy these systems can be envisaged. Beside intrinsic cost parameters, the associated fuel cycle issues can prove to be crucial for their deployment.  相似文献   

5.
This paper presents the neutronic design of a liquid salt cooled fast reactor with flexible conversion ratio. The main objective of the design is to accommodate interchangeably within the same reactor core alternative transuranic actinides management strategies ranging from pure burning to self-sustainable breeding. Two, the most limiting, core design options with unity and zero conversion ratios are described. Ternary, NaCl-KCl-MgCl2 salt was chosen as a coolant after a rigorous screening process, due to a combination of favourable neutronic and heat transport properties. Large positive coolant temperature reactivity coefficient was identified as the most significant design challenge. A wide range of strategies aiming at the reduction of the coolant temperature coefficient to assure self-controllability of the core in the most limiting unprotected accidents were explored. However, none of the strategies resulted in sufficient reduction of the coolant temperature coefficient without significantly compromising the core performance characteristics such as power density or cycle length. Therefore, reactivity control devices known as lithium thermal expansion modules were employed instead. This allowed achieving all the design goals for both zero and unity conversion ratio cores. The neutronic feasibility of both designs was demonstrated through calculation of reactivity control and fuel loading requirements, fluence limits, power peaking factors, and reactivity feedback coefficients.  相似文献   

6.
Partitioning and Transmutation (P&T) strategies assessment and implementation play a key role in the definition of advanced fuel cycles, in order to insure both sustainability and waste minimization. Several options are under study worldwide, and their impact on core design and associated fuel cycles are under investigation, to offer a rationale to down selection and to streamline efforts and resources. Interconnected issues like fuel type, minor actinide content, conversion ratio values, etc. need to be understood and their impact quantified. Then, from a practical point of view, studies related to advanced fuel cycles require a considerable amount of analysis to assess performances both of the reactor cores and of the associated fuel cycles. A physics analysis should provide a sound understanding of major trends and features, in order to provide guidelines for more detailed studies. In this paper, it is presented an improved version of a generalization of the Bateman equation that allows performing analysis at equilibrium for a large number of systems. It is shown that the method reproduces very well the results obtained with full depletion calculations. The method is applied to explore the specific issue of the features of the fuel cycle parameters related to fast reactors with different fuel types, different conversion ratios (CR) and different ratios of Pu over minor actinide (Pu/MA) in the fuel feed. As an example of the potential impact of such analysis, it is shown that for cores with CR below 0.8, the increase of neutron doses and decay heat can represent a significant drawback to implement the corresponding reactors and associated fuel cycles.  相似文献   

7.
8.
A 2400 MWth liquid-salt cooled flexible conversion ratio reactor was designed, utilizing the ternary chloride salt NaCl-KCl-MgCl2 (30-20-50%) as coolant. The reference design uses a wire-wrapped, hexagonal lattice core, and is able to achieve a core power density of 130 kW/l with a core pressure drop of 700 kPa and a maximum cladding temperature under 650 °C. Four kidney-shaped conventional tube-in-shell heat exchangers are used to connect the primary system to a 545 °C supercritical CO2 power conversion system. The core, intermediate heat exchangers, and reactor coolant pumps fit in a vessel approximately 10 m in diameter and less than 20 m high. Lithium expansion modules (LEMs) were used to reconcile conflicting thermal hydraulic and reactor physics requirements in the liquid salt core. Use of LEMs allowed the design of a very favorable reactivity response which greatly benefits transient mitigation. A reactor vessel auxiliary cooling system (RVACS) and four redundant passive secondary auxiliary cooling systems (PSACSs) are used to provide passive heat removal, and are able to successfully mitigate both the unprotected station blackout transient as well as protected transients in which a scram occurs. Additionally, it was determined that the power conversion system can be used to mitigate both a loss of flow accident and an unprotected transient overpower.  相似文献   

9.
Conclusions The accumulated experience in the operation of NPP, including those with fast reactors, shows that during normal operation, with due regard for possible operational difficulties and accidents, they ensure a significantly lower level of risk for personnel and the surrounding population than is present in industrial regions and those prone to natural disasters. Therefore, the dangers connected with the widespread development of nuclear power arise not so much from a real risk as from a risk which in principle can be realized in very improbable accidents. From this point of view sodium-cooled fast reactors have certain advantages. The probability of the maximum accident of the rupture of pipelines in high-pressure reactors must be considerably higher. Here a single event, and one difficult to detect, such as the failure to detect a flaw in manufacture, is enough to initiate the very dangerous first step of an accident. The rupture of equipment in the primary loop of a fast reactor at practically atmospheric pressure is considerably less probable, and the integral assembly is quite safe. All the other chains of development of maximum accidents in a fast reactor require the simultaneous realization of several events in systems and devices which are constantly being monitored (SS and power supply systems, etc.). The above considerations together with such important properties of sodium as the large reserve before the boiling point and the practically inertialess transport of heat from the reactor to structural elements and heat-transfer devices under natural circulation conditions gives one confidence that the level of risk for future industrial NPP with fast reactors will be at least no higher than that for NPP with thermal reactors.Translated from Atomnaya Énergiya, Vol. 43, No. 6, pp. 464–472, December, 1977.  相似文献   

10.
11.
12.
13.
14.
15.
This paper is in four parts. Section 1 explains the theory of the induced-voltage electromagnetic flowmeter and then considers various types which have been used. For the primary circuit of fast reactors both flow-through type and probe type have been proposed, although obtaining magnets which operate satisfactorily at high temperatures has been a problem. In the secondary circuit the high magnetic Reynolds numbers cause the field to be swept out of the magnet gap and this has led to the use of the long saddle-coil flowmeter.In Section 2 flux-distortion flowmeters are described. These have been proposed mainly for monitoring the primary circuit flow and again both flow-through and probe types have been tested. Sections 3 and 4 continue the discussion of the flux-distortion flowmeter by introducing two methods of analysing its performance. The first is a finite difference method which solves the non-linear problem by using a time marching method. It is shown that a linear approximation is adequate for the likely levels of flow encountered in the fast reactor and consequently two linearised solutions are used. The first method is a finite difference one and allows the instantaneous response of a step change in velocity to be observed as well as the effect of bubbles.In Part 4 the second linearized method uses current rings to divide up the conducting material. By considering the interaction of all the rings, it is possible to obtain the current distribution and hence the magnetic field. In conclusion it is suggested that further development would be useful of the devices which are most suited to the liquid metal fast breeder reactor.  相似文献   

16.
Nuclear energy has the potential to provide a secure and sustainable electricity supply at a competitive price and to make a significant contribution to the reduction of greenhouse gas emissions. The renewal of interest in fast neutron spectra reactors to meet more ambitious sustainable development criteria (i.e., resource maximisation and waste minimisation), opens a favourable framework for R&D activities in this area. The Institute for Transuranium Elements has extensive experience in the fabrication, characterization and irradiation testing (Phénix, Dounreay, Rapsodie) of fast reactor fuels, in oxide, nitride and carbide forms. An overview of these past and current activities on fast reactor fuels is presented.  相似文献   

17.
The definitions and requirements of normative documents for unanticipated accidents at nuclear power plants with fast reactors are analyzed. Definitions are constructed between one another and with a collection of scenarios which can lead to unanticipated accidents, likewise determined by normative documents independently of the probability of these accidents actually happening. It is concluded that the normative approaches to fast-reactor safety must be refined with respect to strengthening the probabilistic criteria as a tool limiting the list of required unanticipated accidents for validating reactor safety. Special attention is devoted to the need to strengthen the motivation of designers to make the maximum possible use of passively triggered safety systems.  相似文献   

18.
19.
The main directions and results of research on pyrochemical reprocessing of weapons plutonium in fuel for fast reactors are presented. It is shown that this technology is economical and ecologically validated, compact, fire and explosion safe, especially for reprocessing in carbide-nitride as well as oxide fuel for fast reactors. It satisfies the principle of nonproliferation. For reprocessing weapons plutonium in oxide fuel with deep removal of 241Am and Ga, a combined process which combines pyrochemical conversion of plutonium into oxide or nitride powder, and dissolution in acids and extraction of impurities. It is shown that the fuel kernels made from nitride, carbide, and oxide powers both from individual PuN, PuC0.86, and PuO2 powders as well as mixed plutonium compounds with uranium are fabricated by means of the conventional regime and provide the required density and content of gallium of <0.001 wt. %.  相似文献   

20.
The results of computational and design studies of a 1200 MW, lead-cooled pool-type fast reactor with U---Pu nitride fuel based on the same principles as the previously considered BREST-300 design (Adamov, E.O., Orlov, V.V., Filin et al. Proc. Int. Topical Meeting on Advanced Reactors Safety, ARS'94, Pittsburgh, USA, 1994, pp. 509–516.) are presented. In connection with a capacity increase and to ensure full implementation of the LCFR concept merits in the BREST-1200 design, a number of new solutions have been accepted compared with the more conservative initial design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号