首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead-cooled reactor systems capable of accepting either zero or unity conversion ratio cores depending on the need to burn actinides or operate in a sustained cycle are presented. This flexible conversion ratio reactor is a pool-type 2400 MWt reactor coupled to four 600 MWt supercritical CO2 (S-CO2) power conversion system (PCS) trains through intermediate heat exchangers. The cores which achieve a power density of 112 kW/l adopt transuranic metallic fuel and reactivity feedbacks to achieve inherent shutdown in anticipated transients without scram, and lead coolant in a pool vessel arrangement. Decay heat removal is accomplished using a reactor vessel auxiliary cooling system (RVACS) complemented by a passive secondary auxiliary cooling system (PSACS). The transient simulation of station blackout (SBO) using the RELAP5-3D/ATHENA code shows that inherent shutdown without scram can be accommodated within the cladding temperature limit by the enhanced RVACS and a minimum (two) number of PSACS trains. The design of the passive safety systems also prevents coolant freezing in case all four of the PSACS trains are in operation. Both cores are also shown able to accommodate unprotected loss of flow (ULOF) and unprotected transient overpower (UTOP) accidents using the S-CO2 PCS.  相似文献   

2.
The supercritical carbon dioxide (S-CO2) Brayton cycle is a promising advanced alternative to the Rankine steam cycle and recuperated gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO2 Brayton cycle coupled to an autonomous, natural circulation lead-cooled fast reactor (LFR). The plant dynamics code was used to simulate the whole-plant response to accident conditions. The specific design features of the reactor concept influencing passive safety are discussed and accident scenarios are identified for analysis. Results of calculations of the whole-plant response to loss-of-heat sink, loss-of-load, and pipe break accidents are demonstrated. The passive safety performance of the reactor concept is confirmed by the results of the plant dynamics code calculations for the selected accident scenarios.  相似文献   

3.
Nuclear reactor power systems could revolutionize space exploration and support human outpost on the moon and Mars. This paper reviews various energy conversion technologies for use in space reactor power systems and provides estimates of the system's net efficiency and specific power, and the specific area of the radiator. The suitable combinations of the energy conversion technologies and the nuclear reactors, classified based on the coolant type and cooling method, for best system performance and highest specific power, are also discussed. In addition, a number of power system concepts with both static and dynamic energy conversion, but with no single point failures in reactor cooling, energy conversion and heat rejection, and for nominal electrical powers up to 110 kWe, are presented. The first two power systems employ reactors cooled with lithium and sodium heat pipes, SiGe thermoelectric (TE) and alkali-metal thermal-to-electric conversion (AMTEC), and potassium heat pipes radiators. The reactors heat pipes operate at a fraction of the prevailing capillary or sonic limit, and in the case of a multiple heat pipes failure, those in the adjacent modules remove the additional heat load, thus maintaining the reactor adequately cooled and the power system operating at a reduced power. The third power system employs SiGe TE converters and a liquid metal cooled reactor with a divided core into six sectors that are neurotically and thermally coupled, but hydraulically decoupled. Each sector has a separate energy conversion loop, a heat rejection loop, and a rubidium heat pipes radiator panel. When a core sector experiences a loss-of-coolant, the fission power of the reactor is reduced, and that generated in the sector in question is removed by the circulating coolant in the adjacent sectors. The fourth power system employs a gas cooled reactor with a core divided into three identical sectors, and each sector is coupled to a separate Closed Brayton Cycle (CBC) loop with He-Xe binary mixture (40 g/mol) working fluid, a secondary loop with circulating liquid Nak-78, and two water heat pipes radiator panels.  相似文献   

4.
A 2400 MWth liquid-salt cooled flexible conversion ratio reactor was designed, utilizing the ternary chloride salt NaCl-KCl-MgCl2 (30-20-50%) as coolant. The reference design uses a wire-wrapped, hexagonal lattice core, and is able to achieve a core power density of 130 kW/l with a core pressure drop of 700 kPa and a maximum cladding temperature under 650 °C. Four kidney-shaped conventional tube-in-shell heat exchangers are used to connect the primary system to a 545 °C supercritical CO2 power conversion system. The core, intermediate heat exchangers, and reactor coolant pumps fit in a vessel approximately 10 m in diameter and less than 20 m high. Lithium expansion modules (LEMs) were used to reconcile conflicting thermal hydraulic and reactor physics requirements in the liquid salt core. Use of LEMs allowed the design of a very favorable reactivity response which greatly benefits transient mitigation. A reactor vessel auxiliary cooling system (RVACS) and four redundant passive secondary auxiliary cooling systems (PSACSs) are used to provide passive heat removal, and are able to successfully mitigate both the unprotected station blackout transient as well as protected transients in which a scram occurs. Additionally, it was determined that the power conversion system can be used to mitigate both a loss of flow accident and an unprotected transient overpower.  相似文献   

5.
A sodium-cooled fast reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is subjected to a possible sodium-water reaction. To prevent any hazards from sodium-water reaction, a SFR with the Brayton cycle using Supercritical Carbon dioxide (S-CO2) as the working fluid can be an alternative approach to improve the current SFR design. However, the S-CO2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work is significantly decreased slightly above the critical point due to high density of CO2 near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle can increase the efficiency. Therefore, changing the critical point of CO2 can result in an improvement of the total cycle efficiency with the same cycle layout. A small amount of other gases can be added in order to change the critical point of CO2. The direction and range of the critical point variation of CO2 depends on the mixed component and its amount. Several gases that show chemical stability with sodium within the interested range of cycle operating condition were chosen as candidates for the mixture; CO2 was mixed with N2, O2, He, and Ar. To evaluate the effect of shifting the critical point and changes in the properties of the S-CO2 Brayton cycle, a supercritical Brayton cycle analysis code with a properties program, which has the most accurate mixture models, was developed. The CO2-He binary mixture shows the highest cycle efficiency increase. Unlike the CO2-He binary mixture, the cycle efficiencies of CO2-Ar, CO2-N2, and CO2-O2 binary mixtures decreased compared to the pure S-CO2 cycle. It was found that the increment of critical pressure led to a decrease in cycle operating pressure ratio which resulted in a negative effect on total cycle efficiency. In addition, the effects from changed minimum operating condition and property variations of multi-component working fluid changed the recuperated heat in the cycle which was closely related to the cycle performances.  相似文献   

6.
Transient response of a Gas Cooled Fast Reactor (GFR) coupled to a recompression supercritical CO2 (S-CO2) power conversion system (PCS) in a direct cycle to a Loss of Coolant Accident (LOCA) and a Loss of Generator Load Accident is analyzed using RELAP5-3D. A number of thermal hydraulic challenges for GFR design are pointed out as the designers strive to accommodate cooling of the high power density core of a fast reactor by a gas with its inherently low heat transfer capability, in particular under post-LOCA events when system pressure is lost and when reliance on passive decay heat removal (DHR) is emphasized. Although it is possible to design a S-CO2 cooled GFR that can survive LOCA by cooling the core through natural circulating loops between the core and elevated emergency cooling heat exchangers, it is not an attractive approach because of various bypass paths that can, depending on break location, degrade core cooling. Moreover, natural circulation gas loops can operate in deteriorated heat transfer regimes with substantial reduction of heat transfer coefficient: as low as 30% of forced convection values, and data and correlations in these regimes carry large uncertainties. Therefore, reliable battery powered blowers for post-LOCA decay heat removal that provide flow in well defined regimes with low uncertainty, and can be easily overdesigned to accommodate bypass flows were selected. The results confirm that a GFR with such a DHR system and negative coolant void worth can withstand LOCA with and without scram as well as loss of electrical load without exceeding core temperature and turbomachinery overspeed limits.  相似文献   

7.
In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, “Decay Heat Power in Light Water Reactors,” American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems.  相似文献   

8.
动力转换单元是高温和超高温气冷堆的重要组成部分。本文对高温和超高温气冷堆的动力转换单元进行研究。从4个关键参数(反应堆出口温度、反应堆入口温度、压缩比和主蒸汽参数)入手,对5个循环方案进行比较分析。综合考虑各种工程因素,上位循环为简单氦气透平循环、下位循环为有再热的蒸汽轮机循环的联合循环方案是具有竞争力的,其中下位循环在高温气冷堆范围是亚临界参数循环,在超高温气冷堆范围是超临界参数循环。联合循环可实现高温和超高温气冷堆热量的高效率转化,且反应堆入口温度在反应堆压力壳材料允许的范围内,具有足够的安全性。  相似文献   

9.
The Idaho National Engineering and Environmental Laboratory and Massachusetts Institute of Technology are investigating the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The design being considered here is a pool type reactor that burns actinides and utilizes natural circulation of the primary coolant, a conventional steam power conversion cycle, and a passive decay heat removal system. Thermal-hydraulic evaluations of the actinide burner reactor were performed to determine allowable core power ratings that maintain cladding temperatures below corrosion-established temperature limits during normal operation and following a loss-of-feedwater transient. An economic evaluation was performed to optimize various design parameters by minimizing capital cost. The transient power limit was initially much more restrictive than the steady-state limit. However, enhancements to the reactor vessel auxiliary cooling system for transient decay heat removal resulted in an increased power limit of 1040 MWt, which was close to the steady-state limit. An economic evaluation was performed to estimate the capital cost of the reactor and its sensitivity to the transient power limit. For the 1040 MWt power level, the capital cost estimate was 49 mills per kWhe based on 1999 dollars.  相似文献   

10.
This paper presents the neutronic design of a liquid salt cooled fast reactor with flexible conversion ratio. The main objective of the design is to accommodate interchangeably within the same reactor core alternative transuranic actinides management strategies ranging from pure burning to self-sustainable breeding. Two, the most limiting, core design options with unity and zero conversion ratios are described. Ternary, NaCl-KCl-MgCl2 salt was chosen as a coolant after a rigorous screening process, due to a combination of favourable neutronic and heat transport properties. Large positive coolant temperature reactivity coefficient was identified as the most significant design challenge. A wide range of strategies aiming at the reduction of the coolant temperature coefficient to assure self-controllability of the core in the most limiting unprotected accidents were explored. However, none of the strategies resulted in sufficient reduction of the coolant temperature coefficient without significantly compromising the core performance characteristics such as power density or cycle length. Therefore, reactivity control devices known as lithium thermal expansion modules were employed instead. This allowed achieving all the design goals for both zero and unity conversion ratio cores. The neutronic feasibility of both designs was demonstrated through calculation of reactivity control and fuel loading requirements, fluence limits, power peaking factors, and reactivity feedback coefficients.  相似文献   

11.
The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.  相似文献   

12.
The Advanced High-Temperature Reactor is a new reactor concept that combines four existing technologies in a new way: (1) coated-particle graphite-matrix nuclear fuels (traditionally used for helium-cooled reactors), (2) Brayton power cycles, (3) passive safety systems and plant designs from liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants with boiling points far above the maximum coolant temperature. The new combination of technologies enables the design of a large [2400- to 4000-MW(t)] high-temperature reactor, with reactor-coolant exit temperatures between 700 and 1000°C (depending upon goals) and passive safety systems for economic production of electricity or hydrogen. The AHTR [2400-MW(t)] capital costs have been estimated to be 49 to 61% per kilowatt (electric) relative to modular gas-cooled [600-MW(t)] and modular liquid-metal-cooled reactors [1000-MW(t)], assuming a single AHTR and multiple modular units with the same total electrical output. Because of the similar fuel, core design, and power cycles, about 70% of the required research is shared with that for high-temperature gas-cooled reactors.  相似文献   

13.
Uranium plutonium mixed oxide (MOX) containing up to 30% plutonia is the conventional fuel for liquid metal cooled fast breeder reactor (LMFBR). Use of high plutonia (>30%) MOX fuel in LMFBR had been of interest but not pursued. Of late, it has regained importance for faster disposition of plutonium and also for making compact fast reactors. Some of the issues of high plutonia MOX fuels which are of concern are its chemical compatibility with liquid sodium coolant, dimensional stability and low thermal conductivity. Available literature information for MOX fuel is limited to a plutonium content of 30%. Thermodynamic assessment of mixed oxide fuels indicate that with increasing plutonia oxygen potential of the fuel increases and the fuel become more prone to chemical attack by liquid sodium coolant in case of a clad breach. In the present investigation, some of these issues of MOX fuel have been studied to evaluate this fuel for its use in fast reactor. Extensive work on the out-of-pile thermo-physical properties and fuel-coolant chemical compatibility under different simulated reactor conditions has been carried out. Results of these studies were compared with the available literature information on low plutonia MOX fuel and critically analyzed to predict in reactor behaviour of this fuel containing 44% PuO2. The results of these out-of-pile studies have been very encouraging and helped in arriving at a suitable and achievable fuel specification for utilization of this fuel in fast breeder test reactor (FBTR). As a first step of test pin irradiation programme in FBTR, eight subassemblies of the MOX fuel are undergoing irradiation in FBTR.  相似文献   

14.
A large number of new fast reactors may be needed earlier than foreseen in the Generation IV plans. According to the median forecast of the Special Report on Emission Scenarios commissioned by the Intergovernmental Panel on Climate Control nuclear power will increase by a factor of four by 2050. The drivers for this expected boost are the increasing energy demand in developing countries, energy security, but also climate concerns. However, staying with a once-through cycle will lead to both a substantially increased amount of high-level nuclear waste and an upward pressure on the price of uranium and even concerns about its availability in the coming decades. Therefore, it appears wise to accelerate the development of fast reactors and efficient re-processing technologies.In this paper, two fast reactor systems are discussed—the sodium-cooled fast reactor, which has already been built and can be further improved, and the lead-cooled fast reactor that could be developed relatively soon. An accelerated development of the latter is possible due to the sizeable experience on lead/bismuth eutectic coolant in Russian Alpha-class submarine reactors and the research efforts on accelerator-driven systems in the EU and other countries.First, comparative calculations on critical masses, fissile enrichments and burn-up swings of mid-sized SFRs and LFRs (600 MWe) are presented. Monte Carlo transport and burn-up codes were used in the analyses. Moreover, Doppler and coolant temperature and axial fuel expansion reactivity coefficients were also evaluated with MCNP and subsequently used in the European Accident Code-2 to calculate reactivity transients and unprotected Loss-of-Flow (ULOF) and Loss-of-Heat Sink (ULOHS) accidents. Further, ULOFs as well as decay heat removal (protected Total Loss-of-Power, TLOP) were calculated with the STAR-CD CFD code for both systems.We show that LFRs and SFRs can be used both as burners and as self-breeders, homogeneously incinerating minor actinides. The tight pin lattice SFRs (P/D = 1.2) appears to have a better neutron economy than wide channel LFRs (P/D = 1.6), resulting in larger BOL actinide inventories and lower burn-up swings for LFRs. The reactivity burn-up swing of an LFR self-breeder employing BeO moderator pins could be limited to 1.3$ in 1 year. For a 600 MWe LFR burner, LWR-to-burner support ratio was about two for (U, TRU)O2-fuelled system, while it increased to approximately 2.8 when (Th, TRU)O2 fuel was employed. The corresponding figures for an SFR were somewhat lower. The calculations revealed that LFRs have an advantage over SFRs in coping with the investigated severe accident initiators (ULOF, ULOHS, TLOP). The reason is better natural circulation behavior of LFR systems and the much higher boiling temperature of lead. A ULOF accident in an LFR only leads to a 220 K coolant outlet temperature increase whereas for an SFR the coolant may boil. Regarding the economics, the LFR seems to have an advantage since it does not require an intermediate coolant circuit. However, it was also proposed to avoid an intermediate coolant circuit in an SFR by using a supercritical CO2 Brayton cycle. But in an LFR, the reduced concern about air and water ingress may decrease its cost further.  相似文献   

15.
A design concept of PbBi cooled direct contact boiling water small fast reactor (PBWFR) has been formulated with some design parameters identified. Water is injected into hot PbBi above the core, and direct contact boiling takes place in chimneys. Boiling bubbles rise due to buoyancy effects, which works as a lift pump for PbBi circulation. The generated steam passes through separators and dryers for the removal of PbBi droplets, and then flows into turbines for the generation of electricity. The system pressure of 7 MPa is as the same as that of the conventional boiling water reactors (BWRs). The outlet steam is superheated by 10°C to avoid the accumulation of condensate on a PbBi free surface in the reactor vessel. The control rods are inserted from above, which is different from the original concept. This insertion was chosen since the seal of steam at the top of the reactor vessel is technically much easier than the seal of PbBi at the bottom of the reactor vessel. The electric power of 150 MWe may be the maximum which is practically possible as a small reactor with economic competitiveness to conventional LWRs. A two-region core is designed. A decrease in reactivity was estimated to be 1.5%dk/kk′ for 15 years. A fuel assembly has 271 fuel rods with 12.0 mm in diameter and 15.9 mm in pitch in a hexagonal wrapper tube. The design limit of cladding temperature is specified to be 650°C for compatibility of cladding material with PbBi. As a result, the PbBi core outlet temperature becomes 460°C. The PbBi temperature rise in the core is 150°C. The conditions of the secondary coolant steam are as the same as those of conventional BWRs with thermal efficiency of 33%. The core is designed to have the breeding ratio of 1.1 and the refueling interval of 15 years as a reactor with a long-life core. Direct heat exchangers (DHX), reactor vessel air cooling systems (RVACS) and guard vessel are designed.  相似文献   

16.
The previous paper analyzed the reflooding phase of reactor cores with tight lattice. Models calculating the wall to fluid heat transfer in the precursory cooling region and in the vicinity of the quench front were developed and validated in the previous paper (Wu et al., 2012). In this paper, these newly developed models were used to modify RELAP5/MOD3.2 in order to make the code be suitable for tight lattice. Besides, minor modifications to the wall friction model and bubbly-slug interfacial drag model were done. Then the newly developed code RELAP5/MOD3.2/TIGHT was used to analyze the LOCA transients of conceptually designed reactor cores with three types of tight lattice. The results showed that the peak cladding temperatures in the reflooding phase are much higher than that in the blow-down phase. Through comparison between the calculation results of LOCA transients of the three types of tight lattice, it was found that with smaller pitch to diameter ratio, the peak cladding temperature was much higher. LPIS injection flow rate should be increased in order to keep the rod cladding temperature be within the LOCA criteria. Steam generation will prevent the coolant from flowing downstream of the channel in reactor cores with a very small flow area. From the reactor safety aspect and the economic aspect, we do not recommend that reactor cores be designed with p/d ratio less than 1.10.  相似文献   

17.
Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl2 (LSFR), sodium (SFR), and supercritical CO2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO2 reflector to achieve negative coolant void worth—one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR.  相似文献   

18.
A three-dimensional analysis method for sloshing behavior of fast breeder reactor (FBRs) is developed. The method treats the coolant in a reactor vessel as a potential flow with moving liquid surfaces. The Laplace equation of a velocity potential is solved by a boundary element method with its boundary condition described by a Bernoulli equation.

The vibration test results of a rectangular water pool are calculated by the method. Then, the method is applied to analysis of sloshing behavior of uni- and multi-vessel type FBRs. The latter consists of vessels for the core, heat exchangers and pumps. These vessels are connected by piping. In the case of the uni-vessel type FBR, heat exchangers and pumps are placed in the reactor vessel. The characteristics of sloshing behavior of both the reactors are presented.  相似文献   

19.
The SCWR core concept SCWR-M is proposed based on a mixed spectrum and consists of a thermal zone and a fast zone. This core design combines the merits of both thermal and fast SCWR cores, and minimizes their shortcomings. In the thermal zone co-current flow mode is applied with an exit temperature slightly over the pseudo-critical point. The downward flow in the thermal fuel assembly will provide an effective cooling of the fuel rods. In the forthcoming fast zone, a sufficiently large negative coolant void reactivity coefficient and high conversion ratio can be achieved by the axial multi-layer arrangement of fuel rods. Due to the high coolant inlet temperature over the pseudo-critical point, the heat transfer deterioration phenomenon will be eliminated in this fast spectrum zone. And the low water density in the fast zone enables a hard neutron spectrum, also with a wide lattice structure, which minimizes the effect of non-uniformity of the circumferential heat transfer and reduces the cladding peak temperature.  相似文献   

20.
Analyses of supercritical carbon dioxide (S-CO2) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be sure that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO2 Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 °C core outlet temperature and a 470 °C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号