首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为改善概率地震危险性分析对震源传播特性考虑的不足,提出采用随机模拟与概率地震危险性分析结合的方法,充分考虑反应谱生成中震源机制、传播路径和场地效应等影响,生成更为精确的一致危险性谱。结合核电厂具体场地条件对场地近两千年的历史地震进行模拟,并生成同一超越概率下的一致危险性谱(UHS)。为了比较已有的厂址谱(SL-2)和安评报告中的UHS及美国RG1.60谱所生成的地震动对结构抗震性能的影响,以某核电结构为例,建立三维有限元模型,进行动力时程分析。结果表明:不同反应谱对结构的动力响应差别较大,UHS与SL-2对结构的响应较为接近,且略大于SL-2,但小于美国RG1.60谱。基于随机模拟方法生成的一致危险性谱可为核电厂抗震设计提供参考。  相似文献   

2.
地震概率风险评估可分别基于地震风险解析函数和风险卷积函数实现。本文推导了地震风险解析函数,分析了地震风险解析函数蕴含的两个基本假设和两个近似,分别基于地震风险解析函数和风险卷积函数计算了我国某核电厂安全壳地震风险。结果表明:采用幂指数函数近似地震危险性极值Ⅱ型分布对风险结果无影响;对于算例厂址,地震风险解析函数中KH和kⅠ为常数的近似会高估核电厂安全壳面临的地震风险;我国核电厂安全壳结构地震风险较低,具有较大安全裕量。建议采用地震风险解析函数初步评估我国核电厂安全壳地震风险。  相似文献   

3.
Seismic probabilistic risk assessment could be respectively conducted using analytical function of seismic risk and risk convolution function. In this paper, analytical function of seismic risk was conducted, two basic assumptions and two approximations of analytical function of seismic risk were analyzed, and seismic probabilistic risk analysis of a nuclear power plant containment of our country were respectively conducted using analytical function of seismic risk and risk convolution function. The results show that there is no influence on seismic risk results using a power exponent function approximating seismic hazard distribution following extreme value Ⅱ type distribution. For the case of this paper, seismic risk of a nuclear power plant containment is overestimated based on analytical function of seismic risk, which uses constant KH and kⅠ. Seismic risk of a containment is low in our country, which has a large safety margin. It is proposed that the preliminary seismic risk assessment of a nuclear power plant containment of our country using analytical function of seismic risk should be conducted.  相似文献   

4.
As part of the implementation of the severe accident policy, nuclear power plants in the US are conducting the individual plant examination of external events (IPEEE). Seismic events are treated in these IPEEEs by either a seismic probabilistic risk assessment (PRA) or a seismic margin assessment. The major elements of a seismic PRA are the seismic hazard analysis, seismic fragility evaluation of structures and equipment and systems analysis using event tree and fault tree analysis techniques to develop accident sequences and calculate their frequencies of occurrence. The seismic margin assessment is a deterministic evaluation of the seismic margin of the plant beyond the design basis earthquake. A review level earthquake is selected and some of the components that are on the success paths are screened out as exceeding the review level earthquake; the remaining ones are evaluated for their seismic capacity using information from the original plant design criteria, test data and plant walkdown. The IPEEEs of over 100 operating nuclear power plants are nearing completion. This paper summarizes the lessons learned in conducting the IPEEEs and their applicability to nuclear power plants outside of the United States.  相似文献   

5.
The results of probabilistic seismic hazard analyses are frequently presented in terms of uniform hazard spectra or hazard curves with spectral accelerations as the output parameter. The calculation process is based on the evaluation of the probability of exceedance of specified acceleration levels without consideration of the damaging effects of the causative earthquakes. The same applies to the empirical attenuation equations for spectral accelerations used in PSHA models. This makes interpreting and using the results in engineering or risk applications difficult. Uniform hazard spectra and the associated hazard curves may contain a significant amount of contributions of weak, low-energy earthquakes not able to damage the seismically designed structures of nuclear power plants. For the development of realistic engineering designs and for realistic seismic probabilistic risk assessments (seismic PRA) it is necessary to remove the contribution of non-damaging earthquakes from the results of a PSHA. A detailed procedure for the elimination of non-damaging earthquakes based on the CAV (Cumulative Absolute Velocity)-filtering approach was developed and applied to the results of the large-scale PEGASOS probabilistic seismic hazard study for the site of the Goesgen nuclear power plant. The procedure considers the full scope of epistemic uncertainty and aleatory variability present in the PEGASOS study. It involves the development of a set of empirical correlations for CAV and the subsequent development of a composite distribution for the probability of exceedance of the damaging threshold of 0.16 gs. Additionally, a method was developed to measure the difference in the damaging effects of earthquakes of different strengths by the ratio of a power function of ARIAS-intensity or, in the ideal case, by the ratio of the square roots of the associated strong motion durations. The procedure was applied for the update of the Goesgen seismic PRA and for the confirmation of a revised safe shutdown earthquake for the Goesgen nuclear power plant. The application of the procedure leads to results which are in reasonable compliance with evaluations based on the macroseismic method using European macroseismic intensities and associated vulnerabilities. The paper is an extended version of the paper #1142 presented at the 19th SMIRT conference in Toronto, 2007.  相似文献   

6.
In recent years a number of seismic probabilistic risk assessments of nuclear power plants have been conducted. These studies have highlighted the significance of seismic events to the overall plant risk and have identified several dominant contributors to the seismic risk. It has been learnt from the seismic PRAs that the uncertainty in the seismic hazard results contribute to the large uncertainty in the core damage and severe release frequencies. A procedure is needed to assess the seismic safety of a plant which is somewhat removed from the influence of the uncertainties in seismic hazard estimates. In the last two years, seismic margin review methodologies have been developed based on the results and insights from the seismic probabilistic risk assessments. They focus on the question of how much larger an earthquake should be beyond the plant design basis before it compromises the safety of the plant. An indicator of the plant seismic capacity called the High Confidence Low Probability of Failure (HCLPF) capacity, is defined as the level of earthquake for which one could state with high confidence that the plant will have a low probability of severe core damage. The seismic margin review methodologies draw from the seismic PRAs, experience in seismic analyses, testing and actual earthquakes in order to minimize the review effort. The salient steps in the review consists of preliminary screening of components and systems, performance of detailed seismic walkdowns and evaluation of seismic margins for components, systems and plant.  相似文献   

7.
针对特定百万千瓦级压水堆核电厂开展地震概率风险评价,开发了电厂特定的地震危险性曲线和设备的地震易损度曲线,建立地震概率风险评价模型并完成定量化,给出地震风险结果和见解。结果表明,该特定电厂地震风险水平较低,在0.3g~0.6g地震动水平区间内地震风险贡献最为突出。  相似文献   

8.
地震是核电厂主要外部灾害之一,地震风险评估对于核电厂的安全评价具有重要的价值。抗震裕量评价(SMA)是开展核电厂地震灾害风险分析的重要方法之一,其目的是为了判断核电厂的抗震设计能力相对于设计基准地震的抗震裕量,找出核电厂的抗震薄弱环节,提高核电厂的抗震能力。本文针对福建福清核电厂1、2号机组进行抗震裕量评价,分析表明电力支持系统和一回路辅助管道的抗震能力相对薄弱,是导致核电厂抗震能力薄弱的主要原因,电力支持系统和一回路辅助管道需进一步提高其抗震能力,且核电厂需考虑编制地震应急规程。  相似文献   

9.
荆旭  肖军 《核动力工程》2021,42(3):145-150
论述了核电厂地震概率安全评价(PSA)定量化方法和工具的现状,指出了定量化工具面临的挑战和存在的问题。根据定量化的概率论本质,提出了计算方法。以我国某核电厂厂址多方案概率地震危险性分析(PSHA)结果和核电厂地震响应分析给出的最小割集为例,展示了计算方法的应用过程,分析了地震动参数和置信度参数对定量化计算结果的影响。结果表明,针对置信度参数进行拉丁超立方采样,采样次数较小时即可给出地震导致的核电厂堆芯损坏频率(SCDF)的稳定估计值;通常情况下,设备失效对SCDF的贡献最大,厂房失效的影响相对较小;地震动年发生率对SCDF的贡献需要根据工程场地的位置进行具体分析。   相似文献   

10.
Seismic hazard curves and scenario earthquakes based on probabilistic seismic hazard analysis (PSHA) are evaluated for a site in Korea. Moreover, dominant seismic sources for the site are identified from the contribution factors of the seismic sources. Furthermore, the seismic hazard curves for eight sites in Korea are evaluated to grasp the regional difference of the seismic hazard, and the more detailed information on seismic hazard for Korean sites is obtained.  相似文献   

11.
Safety-critical digital systems have been installed in nuclear power plants and thus their safety effect evaluation has become an emerging issue. The multi-tasking feature of digital instrumentation and control (I&C) equipment could increase the risk factor because the I&C equipment affects the actuation of the safety functions in several mechanisms. In this study, we quantify the safety of the digital plant protection system in Korean nuclear power plants based on probabilistic safety assessment (PSA) technology. Fifteen fault-tree models for the digital reactor-trip system and seven for the safety-feature actuation system are constructed and integrated into the plant safety assessment model. The result of the sensitivity study shows the boundaries of a plant risk and the effect of the digital equipment failures on the total plant risk.  相似文献   

12.
The seismic probabilistic risk assessment (PRA) methodology is a popular approach for evaluating the risk of failure of engineering structures due to earthquake. In this framework, fragility curves express the conditional probability of failure of a structure or component for a given seismic input motion parameter A, such as peak ground acceleration (PGA) or spectral acceleration. The failure probability due to a seismic event is obtained by convolution of fragility curves with seismic hazard curves. In general, a log-normal model is used in order to estimate fragilities. In nuclear engineering practice, these fragilities are determined using safety factors with respect to design earthquake. This approach allows to determine fragility curves based on design study but largely draws on expert judgement and simplifying assumptions. When a more realistic assessment of seismic fragility is needed, simulation-based statistical estimation of fragility curves is more appropriate. In this paper, we will discuss statistical estimation of parameters of fragility curves and present results obtained for a reactor coolant system of nuclear power plant. We have performed non-linear dynamic response analyses using artificially generated strong motion time histories. Uncertainties due to seismic loads as well as model uncertainties are taken into account and propagated using Monte Carlo simulation.  相似文献   

13.
本文基于混合数据的地震易损性分析方法,对我国已运行核电厂地震易损性分析进行研究。首先基于地震危险性分析和分解结果,生成了我国华南地区某核电厂厂址条件谱;然后采用贪心优化算法,选取符合厂址危险性的地震动记录;基于增量动力分析方法,生成我国某核电厂安全壳地震易损性安全系数FS和FSA的解析数据;地震易损性其他参数采用经验数据,基于经验-解析数据,生成了我国某核电厂安全壳地震易损性曲线。建议将基于经验-解析数据的地震易损性分析方法应用于我国核电厂安全壳初步地震易损性分析中。  相似文献   

14.
为得到适合特定核电厂所需要的反应谱,考虑具体的场地条件及地震动参数,采用随机模拟方法与概率危险性分析相结合的方式,建立了生成超越概率为10-4的一致危险性谱(UHS)的方法。为进一步研究核电结构的抗震性能及UHS在实际核电结构中的适用性,设计和制作了1∶20的核电厂房结构模型进行振动台试验,采用2条天然波及UHS、厂址谱(SL-2)、RG1.60谱所生成的人工波对结构的响应进行比对分析。结果表明,不同地震波对核电结构的响应有所差异,UHS生成的人工波对上部结构加速度放大效应以及位移影响较大,对应的楼层反应谱幅值相对其他反应谱较高,进行结构及设备抗震设计时应予以考虑。   相似文献   

15.
The methods developed for full-power probabilistic safety assessment, including thermal-hydraulic methods, have been widely applied to low power and shutdown conditions. Experience from current low power and shutdown probabilistic safety assessments, however, indicates that the thermal-hydraulic methods developed for full-power probabilistic safety assessments are not always reliable when applied to low power and shutdown conditions and consequently may yield misleading and inaccurate risk insights. To increase the usefulness of the low power and shutdown risk insights, the current methods and tools used for thermal-hydraulic calculations should be examined to ascertain whether they function effectively for low power and shutdown conditions. In this study, a platform for relatively detailed thermal-hydraulic calculations applied to low power and shutdown conditions in a pressurized water reactor was developed based on the best estimate thermal-hydraulic analysis code, MARS2.1. To confirm the applicability of the MARS platform to low power and shutdown conditions, many thermal-hydraulic analyses were performed for the selected topic, i.e. the loss of shutdown cooling events for various plant operating states at the Korean standard nuclear power plant. The platform developed in this study can deal effectively with low power and shutdown conditions, as well as assist the accident sequence analysis in low power and shutdown probabilistic safety assessments by providing fundamental data. Consequently, the resulting analyses may yield more realistic and accurate low power and shutdown risk insights.  相似文献   

16.
This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified.The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed.  相似文献   

17.
地震导致丧失厂外电是核电厂地震情况下的典型始发事件。本研究使用地震概率安全分析方法,以高温气冷堆为研究对象,得到其在地震丧失厂外电事故下的风险水平。研究范围包括分析地震导致丧失厂外电的事故发展情景分析,筛选地震设备清单并结合现场巡访进行调整,建立地震导致丧失厂外电的风险评价模型,并对超过高温气冷堆风险接受准则剂量(概率安全目标)的放射性释放的频率结果进行了间隔分析、割集分析和重要度分析。本文工作可为高温气冷堆的地震概率安全分析在方法实施、建模假设、过程分析等方面提供有益的参考。  相似文献   

18.
A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology.  相似文献   

19.
《Nuclear Engineering and Design》2005,235(17-19):1867-1874
By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities.  相似文献   

20.
The effect of very large earthquakes on the safe operation of nuclear power plants is discussed. The fundamental safety and regulatory issues of: (1) uncertainties in the seismic hazard, (2) earthquakes larger than the design basis, and (3) seismic vulnerabilities are described. Finally, the NRC-sponsored Seismic Design Margins Program is described in terms of approach and how this compares with probabilistic risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号