首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents variations of a certain passive safety containment for a near future BWR. It is tentatively named Mark S containment in the paper. It uses the operating dome as the upper secondary containment vessel (USCV) to where the pressure of the primary containment vessel (PCV) can be released through the upper vent pipes. One of the merits of the Mark S containment is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. Another merit is the capability to submerge the PCV and the reactor pressure vessel (RPV) above the core level by flooding water from the gravity-driven cooling system (GDCS) pool and the upper pool. The third merit is robustness against external events such as a large commercial airplane crash owing to the reinforced concrete USCV. The Mark S containment is applicable to a large reactor that generates 1830 MW electric power. The paper presents several examples of BWRs that use the Mark S containment. In those examples active safety systems and passive safety systems function independently and constitute in-depth hybrid safety (IDHS). The concept of the IDHS is also presented in the paper.  相似文献   

2.
The paper presents probable variations of passive safety boiling water reactor (BWR). In order to improve safety and economy of passive safety BWR, the authors thought of use of a kind of improved Mark III type containment. The paper presents the basic configuration of the passive safety BWR that has an improved Mark III type containment. We tentatively call this passive safety BWR advanced safer BWR+ (ASBWR+) and the containment Mark X containment in the paper. One of the merits of the Mark X containment is double containment function against fission products (FP) release. Another merit is very low peak pressure at severe accidents without active cooling systems. The third merit is coolability by natural circulation of outside air. Therefore, the Mark X containment is very suitable for passive safety BWRs. It does not need a reactor building (R/B) as the secondary containment, because it is a double containment by itself. The Mark X containment is a general concept and also useful for half-passive safety BWRs that have both active and passive safety systems. In those examples, active safety systems and passive safety systems function independently and constitute in-depth hybrid safety (IDHS). The concept of the IDHS is also presented in the paper.  相似文献   

3.
The passive safety systems utilized in advanced pressurized water reactor (PWR) design such as AP1000 should be more reliable than that of active safety systems of conventional PWR by less possible opportunities of hardware failures and human errors (less human intervention). The objectives of present study are to evaluate the dynamic reliability of AP1000 plant in order to check the effectiveness of passive safety systems by comparing the reliability-related issues with that of active safety systems in the event of the big accidents. How should the dynamic reliability of passive safety systems properly evaluated? And then what will be the comparison of reliability results of AP1000 passive safety systems with the active safety systems of conventional PWR.

For this purpose, a single loop model of AP1000 passive core cooling system (PXS) and passive containment cooling system (PCCS) are assumed separately for quantitative reliability evaluation. The transient behaviors of these passive safety systems are taken under the large break loss-of-coolant accident in the cold leg. The analysis is made by utilizing the qualitative method failure mode and effect analysis in order to identify the potential failure mode and success-oriented reliability analysis tool called GO-FLOW for quantitative reliability evaluation. The GO-FLOW analysis has been conducted separately for PXS and PCCS systems under the same accident. The analysis results show that reliability of AP1000 passive safety systems (PXS and PCCS) is increased due to redundancies and diversity of passive safety subsystems and components, and four stages automatic depressurization system is the key subsystem for successful actuation of PXS and PCCS system. The reliability results of PCCS system of AP1000 are more reliable than that of the containment spray system of conventional PWR. And also GO-FLOW method can be utilized for reliability evaluation of passive safety systems.  相似文献   

4.
This paper shows a basic concept of a near future boiling water reactor (BWR) aiming at evolutional safety and cost savings with minimum change from the current advanced BWR (ABWR). The plant output is uprated to 1500 MWe from 1356 MWe. This power uprate can bring about potential of 11% cost saving per MWe base. Safety improvement as a next generation large reactor is also achieved.

The advanced reinforced concrete containment vessel (ARCCV) is used for the containment vessel to improve safety for severe accidents. The peak pressure of the containment at severe accidents can be kept close to the design pressure. The advanced passive containment cooling system (APCS) is also provided and can accomplish no primary containment vessel (PCV) venting.

The advanced emergency core cooling system (AECCS) consists of four divisions in the front line. The advanced passive cooling system (APCS) is also provided. The combination of the four divisional emergency core cooling system (ECCS) and the passive safety system improves the plant performance in probabilistic safety assessment (PSA).

This plant concept is designed based on the heritage of the current ABWR. No more major research and development (R&D) are necessary. Therefore, construction and operation is possible in the early 2010s.  相似文献   


5.
AP1000非能动安全壳冷却水WGOTHIC分析   总被引:1,自引:1,他引:0  
本文应用WGOTHIC程序对AP1000核岛整体分工况建模,系统分析了多种情况下冷却水装量对安全性的影响。结果表明:非能动安全壳冷却系统失效1 000 s后,安全壳超压;冷却水冷却72 h后得不到冷却水的补充,0.9 d后安全壳超压;冷却水冷却19.6 d后,安全壳虽超压,但小于安全壳屈服极限压力;冷却水冷却30 d后,空气冷却已足够带走堆芯衰变热,而不需人为干预。结果为应急计划制定和设计改进提供了依据。  相似文献   

6.
AP1000核电站非能动安全系统的比较优势   总被引:1,自引:0,他引:1  
叶成  郑明光  韩旭  陈松 《原子能科学技术》2012,46(10):1221-1225
面对日益增长的核电发展需求,几乎所有的国家都把新的核电项目定位于第Ⅲ代核电技术,其中一个重要原因就是因为第Ⅲ代核电技术的安全性相对于第Ⅱ代和Ⅱ+核电技术的安全性有了很大提高。第Ⅲ代核电技术中的AP1000采用非能动安全技术,极大提高了安全性能指标。对AP1000与第Ⅱ代核电技术中具有代表性的安全系统,即AP1000中的非能动安全壳冷却系统(PCS)和第Ⅱ代核电中的喷淋系统(SCS),进行了比较,从概率安全评价(PSA)的角度对它们进行分析,通过具体计算得出了非能动安全系统具有比较优势的原因。  相似文献   

7.
非能动堆芯冷却系统LOCA下冷却能力分析   总被引:1,自引:0,他引:1  
本文基于机理性分析程序建立了包括反应堆一回路冷却剂系统、专设安全设施及相关二次侧管道系统的先进压水堆分析模型,对典型的小破口失水事故和大破口失水事故开展了全面分析。针对不同破口尺寸、破口位置的失水事故,分析了非能动堆芯冷却系统(PXS)中非能动余热排出系统(PRHRS)、堆芯补水箱(CMT)、安注箱(ACC)、自动卸压系统(ADS)和安全壳内置换料水箱(IRWST)等关键系统的堆芯注水能力和冷却效果。研究表明,虽然破口尺寸、破口位置会影响事故进程发展,但所有事故过程中燃料包壳表面峰值温度不超过1 477 K,且反应堆堆芯处于有效淹没状态。PXS能有效排出堆芯衰变热,将反应堆引导到安全停堆状态,防止事故向严重事故发展。  相似文献   

8.
A generation III+ Boiling Water Reactor (BWR) which relies on natural circulation has evolved from earlier BWR designs by incorporating passive safety features to improve safety and performance. Natural circulation allows the elimination of emergency injection pump and no operator action or alternating current (AC) power supply. The generation III+ BWR's passive safety systems include the Automatic Depressurization System (ADS), the Suppression Pool (SP), the Standby Liquid Control System (SLCS), the Gravity Driven Cooling System (GDCS), the Isolation Condenser System (ICS) and the Passive Containment Cooling System (PCCS). The ADS is actuated to rapidly depressurize the reactor leading to the GDCS injection. The large amount of water in the SP condenses steam from the reactor. The SLCS provides makeup water to the reactor. The GDCS injects water into the reactor by gravity head and provides cooling to the core. The ICS and the PCCS are used to remove the decay heat from the reactor. The objective of this paper is to analyze the response of passive safety systems under the Loss of Coolant Accident (LOCA). A GDCS Drain Line Break (GDLB) test has been conducted in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) which is scaled to represent the generation III+ BWR. The main results of PUMA GDLB test were that the reactor coolant level was well above the Top of Active Fuel (TAF) and the reactor containment pressure has remained below the design pressure. In particular, the containment maximum pressure (266 kPa) was 36% lower than the safety limit (414 kPa). The minimum collapsed water level (1.496 m) before the GDCS injection was 8% lower than the TAF (1.623 m) but it was ensured that two-phase water level was higher than the TAF with no core uncovery.  相似文献   

9.
As a passive containment cooling system (PCCS), which is adopted in simplified BWRs, several concepts, differing in cooling location and method, such as the suppression chamber water wall, the drywell water wall, the isolation condenser (I/C) and the drywell cooler, have been considered. This paper summarizes the characteristics of each PCCS concept, and the analysis results of the performance for several PCCSs during a main steam line break LOCA for a reference simplified BWR plant, obtained by the newly developed containment thermalhydraulic response analysis code TOSPAC.

The performance comparison suggests that I/C and drywell cooler have good heat removal capability with regard to the smallest heat transfer area among PCCS concepts evaluated in the present analysis. I/C removes decay heat efficiently, since it absorbs steam directly from the reactor pressure vessel, which is the hottest portion inside the containment. The suppression chamber water wall is ineffective, mainly due to high non-condensable gas partial pressure in the suppression chamber, and low suppression pool temperature.

Calculations of other pipe breaks were also implemented for the reference plant adopting I/C as PCCS. The results show the effectiveness of the I/C cooling over a wide range of break spectra.  相似文献   

10.
对于AP型核电站小破口失水事故(SBLOCA)试验进程,国内外有较为一致的认识,但对于相同尺寸破口在不同破口位置对试验进程、非能动堆芯冷却系统的影响仍需进一步研究。本文利用大型非能动堆芯冷却整体试验台架ACME开展了非能动余热排出系统(PRHRS)隔离阀前后破口事故试验工况研究,并以堆芯补水箱(CMT)侧冷管底部破口事故工况作为对比工况。试验结果表明:ACME开展的PRHRS隔离阀前后破口事故模拟工况事故进程符合典型SBLOCA进程,堆芯始终处在良好的冷却状态,非能动堆芯冷却系统的安全性得到有效验证;相同破口尺寸工况下,不同破口位置对事故进程有一定的影响,其中破口位置对CMT液位、安注流量的影响较为关键。对比工况中,PRHRS设备换热量也有较大不同,冷管破口和隔离阀后破口工况较隔离阀前破口工况换热量更大,但PRHRS换热管内部流动换热机理需进一步研究。  相似文献   

11.
For the test process of small break loss of coolant accident (SBLOCA) of AP type nuclear power plant, there is a more consistent understanding at home and abroad. However, the influence of the same size of the break on the test process and passive core cooling system in different locations still needs further study. In this paper, a large passive core cooling integrated test facility ACME was used to study the break accident test conditions of passive residual heat removal system (PRHRS) before and behind the isolation valve, and the bottom break test of the cold pipe of core makeup tank (CMT) was used as the contrast condition. The test results show that the accident process of PRHRS before and behind the isolation valve is in accordance with the process of SBLOCA, the core is always in a good cooling statement and the safety of passive core cooling system is effectively verified. There is a certain impact on the accident process for the same break size and different break locations, and the location of the break has a key impact on the CMT level and safety injection flow. In contrast, the heat transfer of PRHRS equipment is also quite different. The heat transfer of cold pipe break and break behind the isolation valve is greater than break before the isolation valve, however, the flow and heat transfer mechanism of PRHRS heat exchange tube needs further study.  相似文献   

12.
Simplified BWRs are characterized as an adoption of a passive ECCS and a passive containment cooling system (PCCS). While a passive ECCS has a short term core cooling function, a PCCS has a long-term decay heat removal function. As a PCCS, several concepts, differing in cooling location and method employed, have been considered. From the containment thermal- hydraulic response analysis viewpoint, simplified BWRs are essentially different from the current BWRs. For evaluating and comparing the performance of several PCCSs over full break spectra, the new containment safety evaluation code TOSPAC was developed as a preliminary design tool for PCCS. This paper summarizes the thermal-hydraulic modelings of the TOSPAC code and the validity evaluation of the TOSPAC code, compared with TRAC-BF1 calculation.

From the validity evaluation concerning a main steam line break (MSLB) accident analysis for an isolation condenser (I/C) as a PCCS, it was found that the TOSPAC calculation result shows reasonable agreement with that for TRAC, even though the TOSPAC consists of simpler modelings.  相似文献   

13.
To evaluate the heat removal capability of a water wall type cooling system, which is one passive containment cooling system (PCCS), the thermal hydraulic behavior in the suppression pool (S/P) and the outer pool (O/P, flat plate water wall) have been investigated experimentally. The following results were obtained. (1) A thermal stratification boundary, which separates the pools into the upper high temperature and lower low temperature regions, was formed just below the vent tube outlet. (2) Convection heat transfer characteristics in the S/P and O/P along the primary containment vessel (PCV) wall had no significant differences and were those of natural convection. Correlation of the natural convection heat transfer up to the Ra number of 2×1014 was obtained. (3) Vertical variations of local condensation heat transfer coefficients under a noncondensable gas presence were within ±10% of the average value for the 4.7 m heat transfer length. An experimental correlation for the average condensation heat transfer coefficients was obtained as a function of steam and noncondensable gas mass ratio. (4) An analytical model to evaluate the system performance of the water wall type PCCS was verified. (5) A baffle plate concept to mitigate thermal stratification at the vent outlet and to enlarge the high temperature region in the S/P was considered as a means to improve heat release capability. Thermal hydraulics with a baffle plate were examined, and effectiveness of the baffle plate to improve the heat release capability was confirmed.  相似文献   

14.
非能动安全壳热量导出系统(PCS)作为三代核电厂重要的安全系统,用于事故后安全壳的非能动冷却。利用大型安全壳综合试验装置,可开展安全壳内复杂的热工水力现象与安全系统之间耦合行为的研究。本文利用大型安全壳综合试验装置开展了PCS换热器冷凝水收集装置对PCS排热影响及收集率试验。结果表明,在工况范围内,换热器下方安装冷凝水收集装置对PCS的换热能力没有明显的不利影响,且其收集率较高。  相似文献   

15.
Thermal hydraulic behavior of nuclear power plant (NPP) is analyzed by using mechanistic computer code for loss of residual heat removal (RHR) system during mid-loop operation of Chinese 300 MWe two-loop pressurized water reactor is presented. In the absence of recovery of RHR or other accident management measures, the reactor core will be uncovered for a long term resulting in core heat-up, degradation and relocation to the lower plenum. The effectiveness of available mitigate measures, such as safety injection system, gravity feed from refueling water storage tank (RWST) and steam generator (SG) reflux-condensation, are investigated. Coolant injection is highly effective in halting the accident progression and make the core recovered. The cooling capability of SG reflux-condensation has a relationship with different availabilities of steam generators and decay heat power. 6 days after shutdown, 2SG operation can keep the water level at mid-line of hot leg. 12 days after shutdown, both 2SG operation and 1SG operation can keep the water level at mid-line of hot leg. The analyses also indicate that the cooling mechanism of safety injection system is more effective than gravity feed from RWST and SG reflux-condensation. Through confirming the success criteria of SG reflux-condensation, time windows can be devided. Then, event trees for loss of RHR system under mid-loop operation are built with considering the analysis results and abnormal procedure.  相似文献   

16.
Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.  相似文献   

17.
Passive containment heat removal system (PCS) is an important passive safety system of three-generation nuclear power plants for containment cooling. Using the large-scale containment integrated test device, the coupling behavior research between complex containment thermal hydraulic phenomenon and safety system can be carried out. The effect of condensate collection device on the heat rejection of PCS and the collection rate test were introduced using the containment integrated test device. The test results show that the condensate collection device installed under the heat exchanger has no obvious adverse effect on the heat exchange capacity of PCS in the research condition of this paper, and the collection rate is high.  相似文献   

18.
A steady state thermal-hydraulic analysis was performed to estimate the power density attainable with hydride-fueled boiling water reactor (BWR) cores with respect to that of an existing oxide BWR core chosen as reference. The power-limiting constraints taken into account were the minimum critical power ratio (MCPR), core pressure drop, fuel average and centerline temperature, cladding outer temperature, flow-induced vibrations and power/flow ratio.The study consisted of two independent analyses: a whole core analysis and a single bundle analysis. The whole core analysis was performed, with a fixed core volume, for both hydride and oxide fuel over hundreds of combinations of rod diameter-rod pitch, referred to as “geometries”, in the ranges 0.6 ≤ D ≤ 1.6 cm and 1.1 ≤ P/D ≤ 1.6. For each geometry, the maximum achievable steady state core power was calculated. Preliminary neutronics results derived from a companion neutronic study were then overlaid on the whole-core thermal-hydraulic results to estimate the reduction in maximum achievable power caused by the application of neutronic constraints. The single bundle analysis was performed to compare in greater detail the thermal-hydraulic performance of a limited number of hydride and oxide fuel bundles having D and P values similar to those of the reference oxide bundle, and for which the compliance with neutronic constraints was demonstrated in a companion neutronic study.The study concluded that, if the core pressure drop is not allowed to increase above the reference core value, the power density increase attainable with hydride fuel is estimated to be in the range 0-15%. If the pressure drop is allowed to increase up to a value 50% higher than the reference core value, the power density increase is estimated to be in the range 25-45%. These power density increases, which are defined with respect to the reference oxide core, decrease about 10% if the comparison is made with respect to oxide designs resembling the most recent commercial high-performance oxide cores.The power gain capability of hydride fuel is primarily due to the possibility of: (1) replacing volumes occupied by water rods and water gaps in oxide fuel cores with fuel rods, thus increasing the heat transfer area per core volume, and (2) flattening the bundle pin-by-pin power distribution.The actual achievement of the above-mentioned power density increase is however conditioned to the compliance of hydride-fueled cores to safety requirements related to core behavior during transients, hydrodynamic stability and steam dryer performance, which are fields of study not addressed in this work. A potential 25-45% power density increase justifies however interest for further investigation on this alternative fuel.  相似文献   

19.
王志 《中国核电》2011,(3):195-206
AP1000在标准设计中革新性重大改进之一就是采用了独特的非能动堆芯冷却系统(PXS)。目前世界上在役核电厂和在建核电工程中,AP1000非能动堆芯冷却系统是第一个完全采用非能动手段来达到堆芯冷却、冷却剂补充以及限制放射性释放等安全功能的安全相关系统。文章结合AP1000非能动堆芯冷却系统设计与运行,应用包络方法对一些重要的设计瞬态进行研究分析,从而得出系统设计的合理性和系统功能实现的可行性,为自主研发ACP100、ACP600、ACP1000等第三代核电技术提供借鉴和参考。  相似文献   

20.
Unprotected loss of flow (ULOF) analysis of metal (U–Pu–6% Zr) fuelled 500 MWe and 1000 MWe pool type FBR are studied to verify the passive shutdown capability and its inherent safety parameters. Study is also made with uncertainties (typically 20%) on the sensitive feedback parameters such as core radial expansion feedback and sodium void reactivity effect. Inference of the study is, nominal transient behavior of both 500 MWe and 1000 MWe core are benign under unprotected loss of flow accident (ULOFA) and the transient power reduces to natural circulation based Safety Grade Decay Heat Removal (SGDHR) system capacity before the initiation of boiling. Sensitivity analysis of 500 MWe shows that the reactor goes to sub-critical and the transient power reduces to SGDHR system capacity before the boiling initiation. In the sensitivity analysis of 1000 MWe core, initiation of voiding and fuel melting occurs. But, with 80% core radial expansion reactivity feedback and nominal sodium expansion reactivity feedback, the reactor was maintained substantially sub-critical even beyond when net power crosses the SGDHR system capacity. From the study, it is concluded that if the sodium void reactivity is limited (4.6 $) then the inherent safety of 1000 MWe design is assured, even with 20% uncertainty on the sensitive parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号