首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过反应堆压力容器外部冷却(ERVC)实现熔融物堆内滞留(IVR)技术是核电厂严重事故缓解的重要措施之一。在本文的研究中,建立了二维切片式、全尺寸的试验台架FIRM,开展严重事故条件下反应堆压力容器ERVC-临界热流密度(CHF)试验研究。试验采用去离子水作为试验工质,获得了反应堆压力容器下封头ERVC过程的CHF限值。研究了真实表面材料对CHF的影响及其影响机理,讨论了在去离子水下表面材料SA508 Gr3. Cl.1钢的老化效应。本试验研究对于认识反应堆压力容器IVR-ERVC条件下的CHF行为、提高反应堆压力容器安全性有重要意义。  相似文献   

2.
通过压力容器外部冷却(ERVC)以实现堆内熔融物滞留(IVR)作为反应堆严重事故缓解管理的一项重要举措一直以来广泛受到关注和研究。本文使用严重事故分析程序MELCOR,从瞬态角度对大型先进压水堆进行了IVR-ERVC相关研究。过程中重点关注了堆芯熔毁和重新定位,熔池形成、生长及其传热过程,并且对压力容器外部流动传热进行了分析。MELCOR计算所得下封头热流密度分布的瞬态结果与临界热流密度(CHF)比较和分析表明,1700 MWe大功率压水堆发生严重事故后在IVRERVC条件下能够保证压力容器的完整性,即,IVR-ERVC能够有效带出下封头熔融物的衰变热量,缓解严重事故后果。  相似文献   

3.
基于SCDAP/RELAP5程序建立了用于熔融物压力容器内滞留(IVR)瞬态分析的系统简化模型,通过对模块式小型堆IVR过程的瞬态计算与分析,初步探索了IVR策略实施过程中压力容器下封头的瞬态热负荷特性。SCDAP/RELAP5程序的计算结果表明,利用外部冷却实施IVR策略的瞬态传热特性可分为熔融物注入之初的激烈传热阶段和熔融物硬壳形成之后的准稳态传热阶段。模块式小型堆的IVR瞬态分析表明,瞬态过程中的热流密度峰值不会达到临界热流密度,最终形成的稳定熔融池传热具有很大的安全裕量。研究同时发现SCDAP/RELAP5程序用于IVR分析时在模型上存在一定的不足。  相似文献   

4.
目前对熔融物堆内滞留(IVR)进行分析时,主要采用两层熔池模型进行点估算分析。然而随着研究的深入,已有IVR分析程序不能准确模拟三层熔池模型。为此,本文采用三层熔池模型开发了模块化IVR分析程序SPIRE,并对计算结果进行了验证。结果表明,SPIRE程序的计算结果与文献结果吻合较好,适用于IVR分析。利用SPIRE程序进行分析可知,与两层熔池相比,三层熔池结构下压力容器底部和轻金属层热流密度均会有明显增强。敏感性分析结果表明,铀氧化份额和不锈钢总质量会显著影响热流密度分布及最大临界热流密度比。  相似文献   

5.
海洋核动力平台严重事故下熔融物堆内滞留分析程序开发   总被引:1,自引:1,他引:0  
针对海洋核动力平台的设计特点,分析了严重事故下压力容器外冷却实现熔融物堆内滞留技术的可行性。根据海洋核动力平台功率密度较低和压力容器下封头尺寸较小的特点,建立了压力容器下封头内熔池传热理论模型,编制了分析程序SR-IVR,进行了基准例题验证。结果表明,本文所建分析模型和程序可用于海洋核动力平台严重事故下熔融物堆内滞留分析。  相似文献   

6.
先进压水堆熔融物堆内滞留参数不确定分析研究   总被引:2,自引:2,他引:0  
压水堆核电厂在严重事故下将发生堆芯熔化事故而形成熔融池。形成熔融池的过程具有很大的不确定性,这影响到反应堆压力容器熔融物堆内滞留(IVR)策略的有效性。本工作以AP1000核电厂两层IVR模型为研究对象,对成功实施反应堆压力容器外部冷却(ERVC)的假想严重事故进行了熔融池参数不确定性分析,包括参数的敏感性分析和使用拉丁超立方抽样的概率分析。结果表明:衰变功率对IVR评价参数影响最大,应采取措施(如上堆腔注水)尽量延缓堆芯熔化的时间;熔融物中不锈钢的质量将对金属层参数造成较大影响,可考虑在压力容器内布置牺牲性材料来减小金属层的集热效应;氧化物层外压力容器失效的概率仅为1.2%,但金属层外压力容器失效的概率高达20%。本结果对今后IVR策略研究和设计具有一定的指导意义,同时也为压水堆核电厂安全评审提供理论支持。  相似文献   

7.
In-vessel retention (IVR) consists in cooling the corium contained in the reactor vessel by natural convection and reactor cavity flooding. This strategy of severe accident management enables the corium to be kept inside the second confinement barrier: the reactor vessel. The general approach which is used to study IVR problems is a “bounding” approach which consists in assuming a specified corium stratification in the vessel and then demonstrating that the vessel can cope with the resulting thermal and mechanical loads. Thermal loading on the vessel is controlled by the convective heat transfer inside the molten corium in the lower head. If there is no water in the vessel and if the corium pool is overlaid by a liquid steel layer, then the heat flux might focus on the vessel in front of the steel layer (“focusing effect”) and exceed the dry-out heat flux (CHF or DHF). One of the critical points of these studies is linked to the determination of the height of the molten steel layer that can stratify above the oxidic pool. The MASCA experiments have highlighted that part of molten steel may stratify under the oxidic corium which reduces the thickness of the steel layer on top of the pool. This behavior can be explained by chemical interaction between the oxide and metallic phases of the pool which confirms that these materials cannot be treated as inert species. Following these conclusions, a methodology which couples physicochemical effects and thermalhydraulics has been developed to address the IVR issue. The main purpose of this paper is to present this methodology and its application for given corium mass inventories. Attention focuses on the influence of parameters such as the ratio U/Zr and oxidation ratio of zirconia. For a 1000 MW PWR, approximately 10 t of steel stratify at the bottom of the vessel for 40% Zr oxidation, and 25 t for 30% Zr oxidation. This leads to a 25–50% increase of the mass of molten steel that is required for avoiding vessel melt-through.  相似文献   

8.
反应堆严重事故工况下堆内环境复杂,针对下腔室内熔融物行为的试验非常有限,因此通常采用假设的熔池结构模型进行事故评价。本文使用ASTEC程序中的3种熔池结构模型,评价典型严重事故工况下不同熔池结构对下封头内壁换热及压力容器完整性的影响。计算结果表明:在外壁绝热且下封头失效仅使用温度限值的条件下,两层熔池结构导致下封头失效时间最短,且由于顶部金属层集热效应,失效位置位于熔池上部;三层熔池结构由于底层金属层的出现,使下封头下部温度持续升高而发生失效,但其失效时间长于两层熔池结构的情况。  相似文献   

9.
In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by most operating nuclear power plants and advanced light water reactors (ALWRs), AP600, AP1000, etc. External reactor vessel cooling (ERVC) is a novel severe accident management for IVR analysis. In present study, IVR analysis code in severe accident (IVRASA) has been developed to evaluate the safety margin of IVR in AP1000 with anticipative depressurization and reactor cavity flooding in severe accident. For, IVRASA, the point estimate procedure has been developed for modeling the steady-state endpoint of two core melt configurations: Configuration I and Configuration II. The results of benchmark calculations of AP600 by IVRASA were consistent with those of the UCSB and INEEL. Then, IVRASA is used to calculate the heat transfer process caused by two core melt configurations of AP1000. The results of calculations of Configuration I indicate that the heat flux remains below the critical heat flux (CHF), however, the sensitivity calculations show that the heat flux in the metallic layer could exceed the CHF because of the focusing effect due to the thin metallic layer. On the other hand, the results of calculations of Configuration II suggest that the thermal failure of the lower head at the bottom location is highly unlikely, but the heat flux in light metallic layer could be higher than that of base case due to the portion of metal partitioning into the lower head. This work also investigated the effect of the uncertainties of the CHF correlations on the analysis of IVR.  相似文献   

10.
堆芯熔化严重事故下保证反应堆压力容器(RPV)完整性非常重要,高温蠕变失效是堆芯熔化严重事故下反应堆压力容器的主要失效模式。在进行严重事故堆芯熔化物堆内包容(IVR)下RPV结构完整性分析中,RPV内外壁和沿高度方向的温度分布以及剩余壁厚是结构分析的重要输入。本文采用CFD分析方法对RPV堆内熔融物、RPV壁以及外部气液两相流动换热进行热-固-流耦合分析,获得耦合情况下的温度场、流场、各相份额分布以及RPV的剩余壁厚,为RPV在严重事故IVR下的结构完整性分析提供依据。  相似文献   

11.
熔融物堆内滞留(IVR)是一项核电厂重要的严重事故管理措施,通过将熔融物滞留在压力容器内,以保证压力容器完整性,并防止某些可能危及安全壳完整性的堆外现象。对于高功率和熔池中金属量相对不足的反应堆,若下封头形成3层熔池结构,则其顶部薄金属层导致的聚焦效应可能对压力容器完整性带来更大的威胁。本文考虑通过破口倒灌及其他工程措施实现严重事故下熔池顶部水冷却,建立熔池传热模型,分析顶部注水的带热能力,建立事件树,分析顶部注水措施的成功概率及IVR的有效性。结果表明,通过压力容器内外同时水冷熔融物,能显著增强IVR措施的有效性。  相似文献   

12.
大型先进压水堆熔融物堆内滞留初步研究   总被引:1,自引:1,他引:0  
参考国外熔融物堆内滞留(IVR)稳态包络工况计算编写相关程序,并与ERI、DOE及INEEL的结果进行比较,对程序进行验证。通过对大型先进压水堆熔池参数和不确定性分析可知,如果使用ULPU-2000台架Ⅳ的流道设计,压水堆发生超CHF事故的可能性小于7%,但压力容器壁厚最大熔化量超过15 cm的可能性很大,如果没有其他缓解措施,建议将大型先进压水堆压力容器厚度增加至20 cm以上。热流分配是影响熔池行为的主要因素,建议采取措施调整熔融池热流分配,以缓解氧化物层和金属层交界面处的传热危机。  相似文献   

13.
A literature review of critical heat flux (CHF) experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available experimental information. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime.Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. Even though the selected concept has not received much attention (in term or theoretical developments and applications) as compared to other more popular DNB models, its basis have often been cited by experimental investigators and is considered by the authors as the “most-likely” mechanism based on the literature review and analysis performed in this work. The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow and has been numerically implemented and validated in bubbly flow and coupled with one- and three-dimensional (CFD) two-phase flow codes, in a companion paper. [Le Corre, J.M., Yao, S.C., Amon, C.H., in this issue. A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one and three-dimensional computer codes. Nucl. Eng. Des.].  相似文献   

14.
反应堆压力容器外部冷却(ERVC)是实现熔融物堆内滞留(IVR)的重要方案之一,而反应堆压力容器(RPV)外壁面的临界热流密度(CHF)决定了ERVC冷却能力的限值。为此建立小型CHF试验装置,并采用RPV用SA508钢制作试验块加热表面。以去离子水为试验工质,开展池沸腾下朝向CHF试验,研究真实RPV表面材料在不同倾角和过冷度条件下的CHF特性,及其老化效应对CHF的影响。结果表明:SA508钢表面极易氧化生锈,其CHF较不易生锈的铜和不锈钢表面要高;SA508钢表面CHF随倾角的增大而增加,但在30°附近存在转折,转折角以下范围内的CHF随倾角增加趋势不明显;CHF随过冷度的增加而增加,且基本呈线性变化。本试验有助于进一步认识RPV外壁面的CHF行为,为后续开展CHF增强方法研究奠定基础。  相似文献   

15.
In PWR primary coolant, it has been assumed that Li and B ions deposited on fuel rod surface under sub-cooled boiling conditions and they changed their chemical forms by chemical reaction with nickel iron oxides on the fuel surface. Accumulated boron on the fuel led to axial offset anomaly (AOA). In the present paper, the amount of boron deposited on the fuel surface was evaluated from two directions. The first calculated the amount with the extended micro-layer evaporation and dry-out (MED) model and the other estimated it from the viewpoint of reactor reactivity (neutron economy calculation).The MED model, which was developed for predicting iron crud deposition on the boiling surface of BWR fuel rods, was extended for application to metallic ion deposition, and modified to evaluate deposition of crud and metallic ions on sub-cooled boiling surface. Processes of growth and collapse of bubbles were calculated to determine the time from bubble generation to collapse and total evaporation volume and deposition amount of boron and metallic ions and their oxides on the fuel rod surface for a bubble. Finally chemical reaction rates of boron and metallic ions were calculated in the deposits.From the evaluation, it was concluded that: (i) the calculated deposition amount of boron on the fuel rod surface, which was four or forty times larger than measured amounts of boron and nickel oxides compounds, was seldom measured in the fuel deposits due to its high release rate; (ii) its hideout return during the reactor shutdown period was seldom observed due to its high concentration in the primary coolant; (iii) one of the most promising approaches to evaluate its accumulation on the fuel rod surface during plant operation was the MED model calculation; and (iv) control of nickel concentration in the primary coolant resulted in decreased nickel oxide deposition and then mitigation of AOA occurrence due to decreasing average residence time of boron on the fuel rod surface.  相似文献   

16.
The external reactor vessel cooling (ERVC) is one of the important methods to achieve the in-vessel retention (IVR), while the critical heat flux (CHF) on the outside wall of the reactor pressure vessel (RPV) decides the maximum heat removal capacity of ERVC. In present work, a small CHF test facility was established. The test surface was made of SA508 steel which was the same surface material of prototype RPV. The deionized water was used as coolant in downward-facing CHF test under pool boiling condition. The influence of the real RPV material surface at different inclination angles and sub-cooling conditions on the CHF characteristics was studied. The influence of aging on CHF was also studied. The results show that the SA508 steel surface is easily oxidized, so its CHF is higher than that of copper and stainless steel surfaces. The CHF of SA508 steel surface increases with inclination angle, but there is a turning point near 30° and the CHF below the turning angle has no obvious trend with the increase of inclination angle. The CHF increases with the sub-cooling, and it shows linear growth characteristics. The test results provide a further understanding of the CHF behavior on the RPV outside wall and lay the foundation for future research work on CHF enhancement methods.  相似文献   

17.
严重事故下反应堆压力容器外水冷有效性概率分析   总被引:2,自引:1,他引:1  
核反应堆的严重事故现象具有较大不确定性,它们影响到反应堆压力容器外水冷措施的有效性.本文应用风险导向事故分析方法,分析了堆芯熔融物在压力容器内滞留的不确定性,得到了反应堆压力容器外水冷有效性的概率分布.用VTA抽样程序的计算结果表明,在发生假想的严重事故并成功实施反应堆压力容器外水冷措施后,对于分析的8类严重事敝序列,若下封头熔融池达到最终包络状态,恰希玛-2核电厂实现堆芯熔融物在压力容器内滞留的成功概率超过99%.  相似文献   

18.
In the study of severe pressurized water reactor accidents, the scenarios that describe the relocation of significant quantities of liquid corium at the bottom of the lower head are usually investigated from the mechanical point of view. In these scenarios, the risk of a breach and the possibility of a large quantity of corium being released from the lower head exists. This may lead to an out of vessel steam explosion or to direct heating of the containment; both which have the potential to lead to early containment failure.Within the framework of the OECD Lower Head Failure (OLHF) programme, a simplified model based on the theory of shells of revolution under symmetrical loading was developed by IRSN. After successfully interpreting some other representative experiments on lower head failures, the model was recently integrated into the European integral severe accident computer ASTEC code. The model was also used to obtain the thermo-mechanical behaviour of a 900-MWe pressurized water reactor lower head, subjected to transient heat fluxes under severe accident conditions.The main objective of this paper is to present: (1) the full mathematical formulations used in the development of the model, including their matrices and integrals defined by analytical expressions; (2) the two creep laws implemented, one for the American steel SA533B1 and one for the French steel 16MND5; and (3) the various numerical interpretations of experiments using the simplified model. This paper can be considered as a theoretical manual to aid users of the simplified model during modelling of lower head failures under severe accident conditions. One of the applications presented in this paper concerns the determination of a diagram representing the vessel time to failure as a function of the pressure level and the heat flux intensity. This information has been used by IRSN in probabilistic safety assessment and severe accident management analyses.  相似文献   

19.
在压力容器内滞留熔融堆芯的过程中,应用牺牲性材料的堆芯熔融物稀释方案是先进轻水堆中一种新型的严重事故缓解措施。当堆芯熔融物被牺牲性材料稀释后,会形成三元或三元以上的熔融混合物。计算多元熔融混合物的热物性是进行牺牲性材料筛选、传热计算和评价稀释方案可行性的重要前提。本文比较了Fe3O4、TiO2和Al2O3-3种候选氧化物牺牲性材料(OSM)的基本物性,并计算了熔融三元UO2-ZrO2-OSM混合物的密度、比热容、热导率和黏度。研究发现,为保证熔融结构发生翻转,需布置的Fe3O4材料的质量较大,而TiO2和Al2O3材料的质量较小。混合物的比热容和热导率随着OSM添加量的增加而增大,而黏度随OSM添加量的增加而减小。混合物熔点Tc越小,在相同温度下混合物的黏性也越小。  相似文献   

20.
Severe accident analysis of a reactor is an important aspect for evaluation of source term. This in turn helps in emergency planning and severe accident management (SAM). Analyses have been carried out for VVER-1000 (V320) reactor following LOCA along with station blackout (SBO) to generate information on these aspects. Availability and unavailability of hydro-accumulators (HAs) are also considered for this study. Integral code ASTEC V1.3 (jointly developed by IRSN, France, and GRS, Germany) is used for analysing the transients. The predictions of different severe accident parameters like vessel rupture time, hydrogen and corium production and radioactivity release to containment have been compared for a spectrum of break sizes to provide information for probabilistic safety analysis (PSA) level-2 and severe accident management (SAM) guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号