首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
正交匹配追踪算法(OMP)是一种利用一个超完备的字典进行信号分解的非线性自适应算法.文献[2]提出了基于树型搜索的正交匹配追踪算法(TB-OMP),尽管TB-OMP算法能够改进向量的逼近性能,但使计算的复杂度成指数倍的增加,严重限制了该算法在许多领域里的应用.在本文中将介绍一种灵活的基于树型搜索的正交匹配追踪算法(FTB-OMP)[5],算法通过设置参数,能够在算法逼近性能和计算复杂度之间找到一个灵活的折衷方案.  相似文献   

2.
针对目前的稀疏去噪算法分解效率低、去噪效果不理想的问题,提出了一种基于自适应匹配追踪的图像去噪算法。该算法首先通过自适应匹配追踪算法求解稀疏系数,然后利用K奇异值分解算法将字典训练成能够有效反映图像结构特征的自适应字典,最后将稀疏系数与自适应字典相结合来重构图像。在重构过程中,将噪声对应的系数去除,最终达到去噪的效果。算法引入Spike-Slab先验来引导稀疏系数矩阵的稀疏性,并利用两个权重矩阵促使去噪模型更加真实。鉴于字典在稀疏算法中的重要性,将自适应字典与DCT冗余字典、Global字典进行比较。实验结果显示,选择自适应字典的去噪结果比传统字典在峰值信噪比上高出约4.5 dB;与目前6种主流的稀疏去噪方法相比,文中提出的方法在3种评价指标上均有不同程度的提高,其中峰值信噪比平均提高了约0.76~6.24 dB,特征相似度平均提高了约0.012~0.082,结构相似性平均提高了约0.015~0.108。对图像去噪算法进行定性的评价,结果显示所提算法保留了更多的有用信息,视觉效果最佳。实验充分证明了自适应匹配追踪图像去噪算法对图像去噪的有效性和鲁棒性。  相似文献   

3.
针对压缩采样匹配追踪( CoSaMP)算法重构精度相对较差的问题,为了提高算法的重构性能,提出了一种基于伪逆处理改进的压缩采样匹配追踪( MCoSaMP)算法。首先,在迭代前,对观测矩阵进行伪逆处理,以此来降低原子间的相干性,从而提高原子选择的准确性;然后,结合正交匹配追踪算法( OMP),将OMP算法迭代K次后的原子和残差作为CoSaMP算法的输入;最后,每次迭代后,通过判断残差是否小于预设阈值来决定算法是否终止。实验结果表明,无论是对一维高斯随机信号还是二维图像信号,MCoSaMP算法的重构效果优于CoSaMP算法,能够在观测值相对较少的情况下,实现信号的精确重构。  相似文献   

4.
如何设计高效的图像稀疏表示模型及其分解算法是稀疏表示领域的研究热点.文中首先构建了图像的结构自适应多成分稀疏表示模型,该模型采用相对阈值标准对图像进行结构自适应的四叉树区域剖分,并将其分类为平滑、边缘和纹理结构的同性区域,构建与其结构形态相一致的多成分字典进行表示.进一步提出了一种结构自适应的子空间匹配追踪图像稀疏分解算法,将每一区域只在与其结构类型相一致的单一结构类型子成分字典中进行低维子空间搜索,降低了图像维数与字典搜索复杂度,提高了稀疏分解效率.实验结果验证了文中算法的有效性.  相似文献   

5.
基于压缩感知信号重建的自适应正交多匹配追踪算法*   总被引:1,自引:2,他引:1  
近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,不同于传统的奈奎斯特采样定理,它指出只要信号具有稀疏性或可压缩性,就可以通过少量随机采样点来恢复原始信号。在研究和总结传统匹配算法的基础上,提出了一种新的自适应正交多匹配追踪算法(adaptive orthogonal multi matching pursuit,AOMMP)用于稀疏信号的重建。该算法在选择原子匹配迭代时分两个阶段,引入自适应和多匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,实现了原始信号的精确重建。最后与传统OMP算法  相似文献   

6.
基于稀疏表示的人脸识别中的子空间追踪(SP)算法的候选原子个数固定与稀疏度相同,因此需要已知信号的稀疏度。针对该缺点,提出一种改进的子空间追踪算法,在选择原子的过程中引入回溯迭代优化思想,候选原子个数随着迭代次数逐一增加。通过移除候选原子集中数量同样逐一增加的可信度较低的原子,使选择的原子与待识别人脸图像具有最相似的结构,能较好地重构人脸。采用稀疏表示分类(SRC)框架,分别与基于SP、SASP、正交匹配追踪(OMP)、OMP-cholesky的人脸识别相比,在ORL和Yale B人脸数据库上的实验结果表明,该算法有最高的识别率。  相似文献   

7.
压缩感知理论的基本思想是原始信号在某一变换域是稀疏的或者是可压缩的,并将奈奎斯特采样定理中的采样过程和压缩过程合二为一。稀疏度自适应匹配追踪(SAMP)算法能够实现稀疏度未知情况下的重构,而广义正交匹配追踪算法每次迭代时选择多个原子,提高了算法的收敛速度。基于上述两种重构算法的优势,提出了广义稀疏度自适应匹配追踪(Generalized Sparse Adaptive Matching Pursuit,gSAMP)算法。针对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标,以及主观视觉上对所提算法与传统的贪婪算法进行对比。在压缩比固定为0.5时,gSAMP算法的重构效果优于传统的MP、OMP、ROMP、SAMP以及gOMP贪婪类重构算法的效果。  相似文献   

8.
压缩传感理论是一种充分利用信号稀疏性或者可压缩性的全新信号采样理论。该理论表明,通过采集少量的信号测量值就能够实现可稀疏信号的精确重构。本文在研究现有经典重构算法的基础上,提出结合图像分块思想和回溯思想的分块子空间追踪算法(Block Subspace Pursuit, B_SP)用于压缩传感信号的重构。该算法以块结构获取图像,利用回溯过程实现支撑集的自适应筛选,最终实现图像信号的精确重构。实验结果表明,在相同测试条件下,该算法的重构效果无论从主观视觉上还是客观数据上都有不同程度的提高。  相似文献   

9.
该文简单对信号稀疏重建的模型和测量矩阵的设计进行了介绍,主要介绍了几种稀疏重建算法,详细给出压缩采样匹配追踪算法及其改进算法的数学框架和基本思想,从原子选择策略和冗余向量的更新方式对算法进行了比较分析,最后通过模拟实验验证了MP,OMP,CoSaMP和IHTCoSaMP算法的重构效果,同时以MSE为性能指标评价了各种算法的重构质量,实验结果表明改进的压缩抽样匹配追踪算法的运算速度较快,重构质量较高。  相似文献   

10.
在压缩感知理论中,设计好的稀疏重构算法是一个比较重要,同时也是一个具有挑战性的问题.稀疏重构的基本目标是用较少的数据样本,通过解一个优化问题完成信号或者图像重构.关于稀疏重构过程,一个重要的研究方向是在数据受噪声干扰的情况下,如何高效快速地重建原信号.本文提出了基于共轭梯度最小二乘法(Conjugate gradient least squares,CGLS)和最小二乘QR分解(Least squares QR,LSQR)的联合优化的匹配追踪算法.该算法采用Alpha散度来测量CGLS和LSQR之间的离散度(差异度),并通过离散度来选择最优的解序列.实验分析表明基于CGLS和LSQR的联合优化的匹配追踪算法在压缩采样的信号受噪声干扰情况下具有较好的恢复能力.  相似文献   

11.
Compared with convex optimization algorithms and combination algorithms, greedy pursuit algorithms can balance operational efficiency and reconstruction precision, so they are widely used in the signal reconstruction step of compressed sensing. However, most existing greedy pursuit algorithms only work well if the signal sparsity is known, and their reconstruction performance is influenced by signal sparsity. To more accurately match the sparsity and obtain better reconstruction performance, we propose a greedy pursuit algorithm, the sparsity estimation based adaptive matching pursuit algorithm, which achieves image reconstruction using a signal sparsity estimation based on the Restricted Isometry Property (RIP) criterion and a flexible step size. Experimental results demonstrate that this algorithm provides better reconstruction performance and lower computation time, using different measurement matrices, when the sparsity is estimated in advance.  相似文献   

12.
为避免“绝对”声韵分割策略的主观性和随意性,结合语谱图以及匹配追踪算法,实现了一种对汉语孤立字进行重叠声韵分割的新的时频方法.以语谱图判决得到的浊音起点为声韵母过渡段的起点,以匹配追踪原子参数在浊音起点之后所达到的第一个极值的位置为过渡段终点.仿真实验结果表明,该方法的分割正确率可达87.5%;将分割后的声韵母单元分别送入语音识别系统,与以整个字节为识别单元相比识别率提高了1.33%.  相似文献   

13.
为了平衡集成学习中差异性和准确性的关系并提高学习系统的泛化性能, 提出一种基于AdaBoost 和匹配追踪的选择性集成算法. 其基本思想是将匹配追踪理论融合于AdaBoost 的训练过程中, 利用匹配追踪贪婪迭代的思想来最小化目标函数与基分类器线性组合之间的冗余误差, 并根据冗余误差更新AdaBoost 已训练基分类器的权重, 进而根据权重大小选择集成分类器成员. 在公共数据集上的实验结果表明, 该算法能够获得较高的分类精度.  相似文献   

14.
基于MP算法的语音信号稀疏分解   总被引:3,自引:1,他引:3       下载免费PDF全文
语音信号稀疏分解是一种新的语音信号分解方法,可以将语音信号分解为很简洁的近似表达形式。在语音信号稀疏分解的基础上,可应用于语音处理的多个方面,如语音压缩、语音去噪和语音识别等。研究利用Matching Pursuit(MP)算法实现语音信号的稀疏分解,实验结果表明基于MP算法的语音信号稀疏分解具有较好的重建精度和较高的稀疏度。  相似文献   

15.
针对广义正交匹配追踪(GOMP)算法复杂度高、重构时间长的问题,提出了一种基于随机支撑挑选的GOMP(StoGOMP)算法。首先引入随机支撑挑选的策略,在每次迭代中随机生成一个概率值。然后通过比较此概率值与预设概率值的大小来决定候选支撑集的挑选方式:若此概率值小于预设概率值,则采用匹配计算方式;否则,采用随机选择方式。最后根据得到的候选支撑来更新残差。这种方式充分考虑了算法单次迭代复杂度和迭代次数之间的平衡,减少了算法的计算量。一维随机信号重构实验结果表明,在预设概率值为0.5、稀疏度为20时,StoGOMP算法相较GOMP算法达到100%重构成功率所需的采样数减少了9.5%。实际图像重构实验结果表明,所提出的算法具有与GOMP算法相当的重构精度,且在采样率为0.5时,所提算法的重构时间相较于原算法减少了27%以上,这说明StoGOMP算法能够有效减少信号的重构时间。  相似文献   

16.
基于压缩感知理论的重建关键在于从压缩感知得到的低维数据中精确恢复出原始的高维稀疏数据。针对目前大多数算法都建立在稀疏度已知的基础上,提出一种后退型固定步长自适应匹配追踪重建算法,能够在稀疏度未知的条件下获得图像的精确重建。该算法通过较大固定步长的设置,保证待估信号支撑集大小的稳步快速增加;以相邻阶段重建信号的能量差为迭代停止条件,在迭代停止后通过简单的正则化方法向后剔除多余原子保证精确重建。实验结果表明,该算法在保证测量次数的条件下可以获得快速的精确重建。  相似文献   

17.
吕伟杰  张飞  胡晨辉 《控制与决策》2017,32(8):1528-1532
针对基于压缩感知的压缩采样匹配追踪(CoSaMP)算法迭代次数严重依赖于信号稀疏度,候选原子冗余度大,从而导致最终的支撑原子集选择时间长、选择精度低等问题,提出一种基于双阈值的压缩采样匹配追踪算法.该算法利用模糊阈值进行支撑集候选原子的选择,引入残差与观测矩阵的相关度变化阈值作为迭代停止条件,对图像进行重构.仿真实验表明,所提出的算法重构速度快,重构效果优于CoSaMP算法.  相似文献   

18.
吕伟杰  孟博  张飞 《控制与决策》2018,33(9):1657-1661
针对稀疏度自适应匹配追踪(Sparsity adaptive matching pursuit,SAMP)算法存在预选原子过多、重构时间长、步长的选择固定等缺点,提出一种稀疏度自适应匹配追踪改进算法.该算法将稀疏度预先设定值与稀疏度估计过量判据相结合进行真实稀疏度快速估计,通过模糊阈值的方法提高候选原子的精确度,采用原子相关阈值改善迭代停止条件,最终实现信号的精确重构.仿真实验表明,改进算法重构质量较好于SAMP算法,重构速率显著提高.  相似文献   

19.
Traditional greedy algorithms need to know the sparsity of the signal in advance, while the sparsity adaptive matching pursuit algorithm avoids this problem at the expense of computational time. To overcome these problems, this paper proposes a variable step size sparsity adaptive matching pursuit (SAMPVSS). In terms of how to select atoms, this algorithm constructs a set of candidate atoms by calculating the correlation between the measurement matrix and the residual and selects the atom most related to the residual. In determining the number of atoms to be selected each time, the algorithm introduces an exponential function. At the beginning of the iteration, a larger step is used to estimate the sparsity of the signal. In the latter part of the iteration, the step size is set to one to improve the accuracy of reconstruction. The simulation results show that the proposed algorithm has good reconstruction effects on both one-dimensional and two-dimensional signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号