首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the microstructural evolution of IMCs in Sn–3.5Ag–X (X = 0, 0.75Ni, 1.0Zn, 1.5In)/Cu solder joints and their growth mechanisms during liquid aging were investigated by microstructural observations and phase analysis. The results show that two-phase (Ni3Sn4 and Cu6Sn) IMC layers formed in Sn–3.5Ag–0.75Ni/Cu solder joints during their initial liquid aging stage (in the first 8 min). While after a long period of liquid aging, due to the phase transformation of the IMC layer (from Ni3Sn4 and Cu6Sn phases to a (Cu, Ni)6Sn5 phase), the rate of growth of the IMC layer in Sn–3.5Ag–0.75Ni/Cu solder joints decreased. The two Cu6Sn5 and Cu5Zn8 phases formed in Sn–3.5Ag–1.0Zn/Cu solder joints during the initial liquid aging stage and the rate of growth of the IMC layers is close to that of the IMC layer in Sn–3.5Ag/Cu solder joints. However, the phase transformation of the two phases into a Cu–Zn–Sn phase speeded up the growth of the IMC layer. The addition of In to Sn–3.5Ag solder alloy resulted in Cu6(Snx,In1?x)5 phase which speeded up the growth of the IMC layer in Sn–3.5Ag–1.5In/Cu solder joint.  相似文献   

2.
The effect of adding a small amount of rare earth cerium (Ce) element to low Ag containing Sn-1wt%Ag Pb-free solder on its interfacial reactions with Cu substrate was investigated. The growth of intermetallic compounds (IMCs) between three Sn-1Ag-xCe solders with different Ce contents and a Cu substrate was studied and the results were compared to those obtained for the Ce-free Sn-1Ag/Cu systems. In the solid-state reactions of the Sn-1Ag(-xCe)/Cu solder joints, the two IMC layers, Cu6Sn5 and Cu3Sn, grew as aging time increased. Compared to the Sn-1Ag/Cu joint, the growth of the Cu6Sn5 and Cu3Sn layers was depressed for the Ce-containing Sn-1Ag-xCe/Cu joint. The addition of Ce to the Sn-Ag solder reduced the growth of the interfacial Cu-Sn IMCs and prevented the IMCs from spalling from the interface. The evenly-distributed Ce elements in the solder region blocked the diffusion of Sn atoms to the interface and retarded the growth of the interfacial IMC layer.  相似文献   

3.
This study investigated the effects of adding 0.5 wt.% nano-TiO2 particles into Sn3.5Ag0.5Cu (SAC) lead-free solder alloys on the growth of intermetallic compounds (IMC) with Cu substrates during solid-state isothermal aging at temperatures of 100, 125, 150, and 175 °C for up to 7 days. The results indicate that the morphology of the Cu6Sn5 phase transformed from scallop-type to layer-type in both SAC solder/Cu joints and Sn3.5Ag0.5Cu-0.5 wt.% TiO2 (SAC) composite solder/Cu joints. In the SAC solder/Cu joints, a few coarse Ag3Sn particles were embedded in the Cu6Sn5 surface and grew with prolonged aging time. However, in the SAC composite solder/Cu aging, a great number of nano-Ag3Sn particles were absorbed in the Cu6Sn5 surface. The morphology of adsorption of nano-Ag3Sn particles changed dramatically from adsorption-type to moss-type, and the size of the particles increased.The apparent activation energies for the growth of overall IMC layers were calculated as 42.48 kJ/mol for SAC solder and 60.31 kJ/mol for SAC composite solder. The reduced diffusion coefficient was confirmed for the SAC composite solder/Cu joints.  相似文献   

4.
The interaction between Cu6Sn5 particles in the bulk of a solder and a Ni substrate was examined during solid-state aging using Cu/Sn/Ni and Cu/Sn/Cu/Sn/Ni diffusion couples with initially thin Cu layers. The results clearly demonstrated that the (Cu,Ni)6Sn5 particles dispersed in the bulk solder decomposed in order for a ternary (Cu1−xNix)6Sn5 layer to grow at the solder/Ni interface during solid-state aging. The interaction between the (Cu,Ni)6Sn5 particles and the (Cu1−xNix)6Sn5 layer occurs owing to the driving force for the (Cu,Ni)6Sn5 compound to become saturated with Ni. A (Ni,Cu)3Sn4 layer forms at the (Cu1−xNix)6Sn5/Ni interface only after the Ni composition of the (Cu,Ni)6Sn5 phase in the bulk solder approaches that of the (Cu1−xNix)6Sn5 layer. Once the (Ni,Cu)3Sn4 layer has formed, it grows at an exceptionally rapid rate by consuming the (Cu1−xNix)6Sn5 and Sn layers, which can be problematic in solder joint reliability.  相似文献   

5.
The effect on the growth kinetics of the intermetallic compounds (IMCs) in solder/Cu joints, caused by adding Bi to eutectic Sn-3.5Ag solder alloy, was examined at the aging temperatures of 150°C and 180°C. The Cu6Sn5 layer growth was significantly enhanced, but the Cu3Sn layer growth was slightly retarded by the addition of Bi, resulting in significant growth enhancement of the total (Cu6Sn5+Cu3Sn) IMC layer with increasing Bi addition. The IMC layer growth in the Bi-containing solder joints was accompanied by the accumulation of Bi ahead of the Cu6Sn5 layer that resulted in the formation of a liquid layer at the Cu6Sn5/solder interface. A kinetic model was developed for the planar growth of the Cu6Sn5 and Cu3Sn layers in the solder joints, accounting for the existence of interfacial reaction barriers. Predictions from the kinetic model showed that the experimental results could be well explained by the hypothesis that the formation of a Bi-rich liquid layer at the Cu6Sn5/solder interface reduces the interfacial reaction barrier at the interface.  相似文献   

6.
The present study details the microstructure evolution of the interfacial intermetallic compounds (IMCs) layer formed between the Sn-xAg-0.5Cu (x = 1, 3, and 4 wt.%) solder balls and electroless Ni-P layer, and their bond strength variation during aging. The interfacial IMCs layer in the as-reflowed specimens was only (Cu,Ni)6Sn5 for Sn-xAg-0.5Cu solders. The (Ni,Cu)3Sn4 IMCs layer formed when Sn-4Ag-0.5Cu and Sn-3Ag-0.5Cu solders were used as aging time increased. However, only (Cu,Ni)6Sn5 IMCs formed in Sn-1Ag-0.5Cu solders, when the aging time was extended beyond 1500 h. Two factors are expected to influence bond strength and fracture modes. One of the factors is that the interfacial (Ni,Cu)3Sn4 IMCs formed at the interface and the fact that fracture occurs along the interface. The other factor is Ag3Sn IMCs coarsening in the solder matrix, and fracture reveals the ductility of the solder balls. The above analysis indicates that during aging, the formation of interfacial (Ni,Cu)3Sn4 IMCs layers strongly influences the pull strength and the fracture behavior of a solder joint. This fact demonstrates that interfacial layers are key to understanding the changes in bonding strength. Additionally, comparison of the bond strength with various Sn-Ag-Cu lead-free solders for various Ag contents show that the Sn-1Ag-0.5Cu solder joint is not sensitive to extended aging time.  相似文献   

7.
Abstract

This study investigates the influence of 0–1˙5 wt-%Cu addition on the microstructure and the intermetallic compound (IMC) formation of the as soldered Sn–3Ag–1˙5Sb–xCu (wt-%) solders and following thermal storage at 150°C for 0, 25, 200 and 600 h, with the intention of identifying the optimum Cu addition for industrial applications. The experimental results show that the melting point of Sn–3Ag–1˙5Sb–xCu solder decreases with Cu addition. For Cu additions of 1˙0 wt-% or higher, an IMC of Cu6Sn5 particles is dispersed throughout the matrix, resulting in a dispersion strengthening effect, and its size increases with the levels of Cu addition increasing. The coarsened long strip like Cu6Sn5 with a length of more than 100 μm growing from the upper interface of IMC layer into the solder matrix is observed in the solder with 1˙5 wt-%Cu addition after thermal storage. Cu6Sn5 grains in the IMC layer develop the ripening grains with a more hexagonal or polygonal shape and smooth edged flat surfaces instead of scallop shape. Additionally, the microhardness of each solder increases with Cu addition and decreases with increasing time of thermal storage at 150°C.  相似文献   

8.
The reaction between Cu pillar and eutectic SnPb solder during isothermal annealing was studied systematically. Intermetallic compounds (IMCs), such as Cu6Sn5 and Cu3Sn, were formed in between Cu and SnThe parabolic rate law was observed on IMC formation, which indicated that the growth of IMCs was controlled by atomic diffusion (a diffusion-limited process). Annealing at 165 °C for 160 h decreased the growth rate of Cu6Sn5, and at the same time increased the growth rate of Cu3Sn. This was when Sn in solder was exhausted completely. The activation energies for the growth of Cu3Sn and Cu6Sn5 were measured to be 1.77 eV and 0.72 eV, respectively. The Kirkendall void that formed at the interface between Cu pillar and solder obeyed the parabolic rate law. The growth rate of the Kirkendall void increased when the Sn in solder was consumed in its entirety.  相似文献   

9.
为了改善Sn-58Bi低温钎料的性能,通过在Sn-58Bi低温钎料中添加质量分数为0.1%的纳米Ti颗粒制备了Sn-58Bi-0.1Ti纳米增强复合钎料。在本文中,研究了纳米Ti颗粒的添加对-55~125 oC热循环过程中Sn-58Bi/Cu焊点的界面金属间化合物(IMC)生长行为的影响。研究结果表明:回流焊后,在Sn-58Bi/Cu焊点和Sn-58Bi-0.1Ti/Cu焊点的界面处都形成一层扇贝状的Cu6Sn5 IMC层。在热循环300次后,在Cu6Sn5/Cu界面处形成了一层Cu3Sn IMC。Sn-58Bi/Cu焊点和Sn-58Bi-0.1Ti/Cu焊点的IMC层厚度均和热循环时间的平方根呈线性关系。但是,Sn-58Bi-0.1Ti/Cu焊点的IMC层厚度明显低于Sn-58B/Cu焊点,这表明纳米Ti颗粒的添加能有效抑制热循环过程中界面IMC的过度生长。另外计算了这两种焊点的IMC层扩散系数,结果发现Sn-58Bi-0.1Ti/Cu焊点的IMC层扩散系数(整体IMC、Cu6Sn5和Cu3Sn IMC)明显比Sn-58Bi/Cu焊点小,这在一定程度上解释了Ti纳米颗粒对界面IMC层的抑制作用。  相似文献   

10.
The formation and the growth of the intermetallic compounds (IMCs) at the interface between the Sn–8Zn–3Bi–xAg (x = 0, 0.5, and 1 wt.%) lead-free solder alloys and Cu substrate soldered at 250 °C for different durations from 5 to 60 min were investigated. It was found that Cu5Zn8 and CuZn5 formed at Sn–8Zn–3Bi/Cu interface, and Cu5Zn8 and AgZn3 formed at the solder/Cu interface when the solder was added with Ag. The thickness of IMC layers in different solder/Cu systems increased with increasing the soldering time. And the growth of the IMCs was found to be mainly controlled by a diffusion mechanism. Additionally, the growth of the IMC layers decreased with increasing content of Ag in the soldering process.  相似文献   

11.
《Intermetallics》2007,15(11):1471-1478
Cu6−xNixSn5 is an important intermetallic compound (IMC), which was known to greatly improve the reliability of the solder joints in integrated circuits. However, the improvement mechanisms and even the crystal structure of the IMC were not fully understood. In this paper, the first-principles calculations were performed to determine the stable structure of Cu6−xNixSn5 IMC. The structural and electronic properties of Cu6−xNixSn5 (x = 0, 1, 2) IMCs have been calculated. The results show that Ni atoms preferentially occupied 8f sites (Cu2) and formed Cu4Ni2Sn5. The results of energy calculation and density of states demonstrate that this Cu4Ni2Sn5 IMC had a more stable structure than Cu6Sn5. These results are also expected to account for the improvement in the reliability of the solder joint.  相似文献   

12.
Wetting and interfacial reactions were investigated for Sn−xAg−0.5Cu alloys, in which the Ag content had a variation from x=1.0 to x=4.0. Differential scanning calorimetry (DSC) was used to investigate the range of the melting temperature and the solidification temperature by measuring the endothermic and the exothermic heat flow, respectively. Low Ag contents increased the melting temperature ranges and deteriorated the wetting properties such as zero cross time and wetting force measured at two seconds. The extent of undercooling increased and the thickness of intermetallic compounds (IMC) decreased as the Ag content decreased. As the Ag content decreased, the initial IMC thickness decreased due to the large undercooling and, during the solid aging at 170°C, the IMC growth slightly decelerated because of the small diffusion coefficient. For the application of good drop shock reliability, Sn−Ag−Cu solder of low Ag content should be beneficial due to the restraint of the IMC growth (Cu6Sn5 and Cu3Sn) and of the coarse plate-like IMC (Ag3Sn).  相似文献   

13.
There was a sudden increase of intermetallic compound (IMC) Cu6Sn5 growth rate in the eutectic Sn58wt. %Bi/Cu joint during aging process. With aging time increasing, Bi accumulated at the Cu3Sn/Cu interface and gradually induced the fracture mode of the joint to change from ductile to brittle one along this interface. Bi segregation enhanced IMC Cu6Sn5 growth by means of promoting the interfacial reaction at Cu3Sn/Cu interface, which was concluded from IMCs (Cu6Sn5 and Cu3Sn) growth behavior for pure Sn/Cu and Sn10wt. %Bi/Cu interconnects at the same temperature.  相似文献   

14.
The effect of adding 0.5-1.5 wt.% Zn to Sn-3.8Ag-0.7Cu (SAC) solder alloy during reflow and solid state ageing has been investigated. In particular, the role of the Zn addition in suppressing interfacial Intermetallic Compound (IMC) growth on Cu and Ni-P substrates has been determined. Solder-substrate couples were aged at 150 °C and 185 °C for 1000 h. In the case of 0.5-1.0 wt.% Zn on Cu substrate, Cu3Sn IMC was significantly suppressed and the morphology of Cu6Sn5 grains was changed, leading to suppressed Cu6Sn5 growth. In the SAC-1.5Zn/Cu substrate system a Cu5Zn8 IMC layer nucleated at the interface followed by massive spalling of the layer into the solder, forming a barrier layer limiting Cu6Sn5 growth. On Ni-P substrates the (Cu,Ni)6Sn5 IMC growth rate was suppressed, the lowest growth rate being found in the SAC-1.5Zn/Ni-P system. In all cases the added Zn segregated to the interfacial IMCs so that Cu6Sn5 became (Cu,Zn)6Sn5 and (Cu,Ni)6Sn5 became (Ni,Cu,Zn)6Sn5. The effect of Zn concentration on undercooling, wetting angles and IMC composition changes during ageing are also tabulated, and a method of incorporating Zn into the solder during reflow without compromising solder paste reflow described.  相似文献   

15.
《Acta Materialia》2001,49(14):2609-2624
The dissolution and interfacial reactions involving thin-film Ti/Ni/Ag metallizations on two semiconductor devices, diode and metal-oxide-semiconductor field-effect transistor (MOSFET), a Sn–3.0Ag–0.7Cu solder, and a Au-layer on the substrates are studied. To simulate the dissolution kinetics of the Ag-layer in liquid solder during the reflow process, the computational thermodynamics (Thermo-Calc) and kinetics (DICTRA: DIffusion Controlled TRAnsformations) tools are employed in conjunction with the assessed thermochemical and mobility data. The simulated results are found to be consistent with the observed as-reflowed microstructures and the measured Ag contents in the solder. In the as-reflowed joints two different intermetallic compounds (IMC) are found near the diode/solder interface. Both are in the form of particles of different morphologies, not a continuous layer, and are referred to as IMC-I and IMC-II. The former corresponds to Ni3Sn4 with Cu atoms residing in the Ni sublattice. It is uncertain whether IMC-II is Cu6Sn5 phase with Ni atoms residing in the Cu sublattice or a Cu–Ni–Sn ternary phase. Near the as-reflowed MOSFET/solder interface, both particles and a skeleton-like layer of Ni3Sn4 are observed. The primary microstructural dynamics during solid state aging are the coarsening of IMC particles and the reactions involving the unconsumed (after reflow) Ni- and the Ti-layer with Sn and Au. While the reaction with the Ni-layer yields only Ni3Sn4 intermetallic, the reaction involving the Ti-layer suggests the formation of Ti–Sn and Au–Sn–Ti intermetallics. The latter is due to the diffusion of Au from the substrate side to the die side. It is postulated that the kinetics of Au–Sn–Ti layer is primarily governed by the diffusion of Au through the Ni3Sn4 layer by a grain boundary mechanism.  相似文献   

16.
研究了铜基板退火处理对Cu/Sn58Bi界面微结构的影响. 结果表明,在回流以及时效24 h后Cu/Sn58Bi/Cu界面只观察到Cu6Sn5. 随着时效时间的增加,在界面形成了Cu6Sn5和Cu3Sn的双金属间化合物(IMC)层,并且IMC层厚度也随之增加. 长时间时效过程中,在未退火处理的铜基板界面产生了较多铋偏析,而在退火处理的铜基板界面较少产生铋偏析. 比较退火处理以及未退火处理的铜基板与钎料界面IMC层生长速率常数,发现铜基板退火处理能减缓IMC层生长,主要归因于对铜基板进行退火处理能够有效的消除铜基板的内应力与组织缺陷,从而减缓Cu原子的扩散,起到减缓IMC生长的作用.  相似文献   

17.
通过向锡钎料中添加不同含量的Zn元素,系统研究了锌对SnxZn/Cu(x=0,0.2,0.5,0.8(质量分数,%))界面处柯肯达尔空洞形成的影响.结果表明,经热老化处理后,纯Sn/Cu接头中的Cu3 Sn层和Cu3 Sn/Cu界面出现了大量柯肯达尔空洞.然而随着Zn元素含量的增加,反应界面处的Cu3Sn层逐渐变薄甚至消失,柯肯达尔空洞也随之显著减少或消失;锌在反应界面处的富集现象越来越显著.锌参与了界面反应,形成了(Cu,Zn)6Sn5相、Cu6(Sn,Zn)5相和Cu-Zn固溶合金,其中Cu-Zn固溶合金层可以显著影响铜的界面扩散.Zn元素直接参与了界面扩散,在很大程度上缓和铜和锡的不平衡扩散,从而有效抑制了柯肯达尔空洞的形成.  相似文献   

18.
The growth behavior and roughness evolution of intermetallic compounds (IMCs) layer between Sn–3.5Ag, Sn–3.5Ag–0.7Cu, Sn–3.5Ag–1.7Cu and Sn–0.5Ag–4Cu lead-free solder alloys and Cu substrate are investigated during soldering under 250 °C. With the increase of Cu content in Sn–3.5Ag, Sn–3.5Ag–0.7Cu and Sn–3.5Ag–1.7Cu solders, the IMC thickness increases due to the decrease of the dissolution rate of the IMCs. The IMC thickness of Sn–0.5Ag–4Cu is quite thinner in a short soldering time. However, with the increase of soldering time, the IMCs layer grows quickly due to the precipitation effect of the Cu6Sn5 in the liquid solder. With the increase of soldering time, the roughness of all the IMC layers increases. The roughness of Sn–3.5Ag–0.7Cu and Sn–3.5Ag–1.7Cu interfaces is larger than that of Sn–3.5Ag while Sn–0.5Ag–4Cu/Cu interface has the smallest roughness value. It is believed that the small IMC roughness of Sn–3.5Ag/Cu interface is caused by the IMCs dissolution, and the large IMC/liquid solder interfacial energy maybe the reason for Sn–0.5Ag–4Cu/Cu interface obtaining the smallest IMC roughness.  相似文献   

19.
J.Y. Kim  Jin Yu  S.H. Kim 《Acta Materialia》2009,57(17):5001-5012
Ternary Pb-free solders, Sn–3.5Ag–X, containing 0.5 wt.% of Zn, Mn and Cr, were reacted with Cu UBM, which was electroplated using SPS additive. Characteristics of Cu–Sn IMCs and Kirkendall void formation at the Cu/Sn–3.5Ag solder joints were significantly affected by the third element, and the potency to suppress Kirkendall voids at the solder joint increased in the order of Cr, Mn, Zn, which was indeed the order of the drop reliability improvement. From the AES analyses, it was suggested that the sulfide-forming elements in the solder diffused into the Cu UBM and reduced the segregation of S atoms to the Cu/Cu3Sn interface by scavenging S, which led to the suppression of Kirkendall void nucleation at the Cu/Cu3Sn interface and the drop reliability improvement. In the case of the Zn-containing solder joint, Cu3Sn phase, known to be a host of Kirkendall voids, did not form at all even after extended aging treatments. The magnitude of the tensile stress at the Cu3Sn/Cu interface which drove the Kirkendall void growth was estimated to be 10–100 MPa.  相似文献   

20.
Pb-free solders for flip-chip interconnects   总被引:2,自引:0,他引:2  
A variety of lead-free solder alloys were studied for use as flip-chip interconnects including Sn-3.5Ag, Sn-0.7Cu, Sn-3.8Ag-0.7Cu, and eutectic Sn-37Pb as a baseline. The reaction behavior and reliability of these solders were determined in a flip-chip configuration using a variety of under-bump metallurgies (TiW/Cu, electrolytic nickel, and electroless Ni-P/Au). The solder micro-structure and intermetallic reaction products and kinetics were determined. The Sn-0.7Cu solder has a large grain structure and the Sn-3.5Ag and Sn-3.8Ag-0.7Cu have a fine lamellar two-phase structure of tin and Ag3Sn. The intermetallic compounds were similar for all the lead-free alloys. On Ni, Ni3Sn4 formed and on copper, Cu6Sn5Cu3Sn formed. During reflow, the intermetallic growth rate was faster for the lead-free alloys, compared to eutectic tin-lead. In solidstate aging, however, the interfacial intermetallic compounds grew faster with the tinlead solder than for the lead-free alloys. The reliability tests performed included shear strength and thermomechanical fatigue. The lower strength Sn-0.7Cu alloy also had the best thermomechanical fatigue behavior. Failures occurred near the solder/intermetallic interface for all the alloys except Sn-0.7Cu, which deformed by grain sliding and failed in the center of the joint. Based on this study, the optimal solder alloy for flip-chip applications is identified as eutectic Sn-0.7Cu. Editor’s Note: A hypertext-enhanced version of this article can be found at www.tms.org/pubs/journals/JOM/0106/Frear-0106.html For more information, contact D.R. Frear, Interconnect Systems Laboratories, Motorola, Tempe, AZ 85284; (480) 413-6655; fax (480) 413-4511; e-mail darrel.frear@motorola.com.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号