首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particle separation technology plays an important role in a wide range of applications as a critical sample preprocessing step for analysis. In this work, we proposed and fabricated a multilayer lateral-flow particle filtration and separation device based on polydimethylsiloxane molding and transfer bonding techniques. Particle separation capability was demonstrated by 4.5-um polystyrene bead filtration and cancer cell (SK-BR-3) retrieving. This device exhibits higher throughput compared with most active particle separation methods and is less vulnerable to membrane clogging problem. This novel multilayer particle filtration and separation device is expected to find applications in biomedical, environmental and microanalysis fields.  相似文献   

2.
Magnetic particle dosing and size separation in a microfluidic channel   总被引:1,自引:0,他引:1  
Separation of functional magnetic particles or magnetically labeled entities is a key feature for bioanalytical or biomedical applications and therefore also an important component of lab-on-a-chip devices for biological applications. We present a novel integrated microfluidic magnetic bead manipulation device, comprising dosing of magnetic particles, controlled release and subsequent magnetophoretic size separation with high resolution. The system is designed to meet the requirements of specific bioassays, in particular of on-chip agglutination assays for the detection of rare analytes by particle coupling as doublets. Integrated soft-magnetic microtips with different shapes provide the magnetic driving force of the bead manipulation protocol. The magnetic tips that serve as field concentrators of an external electromagnetic field, are positioned in close contact to a microfluidic channel in order to generate high magnetic actuation forces. Mixtures of 1.0 μm and 2.8 μm superparamagnetic beads have been used to characterize the system. Magnetophoretic size separation with high resolution was performed in static conditions and in continuous flow mode. In particular, we could demonstrate the separation of 1.0 μm single beads and doublets in a sample flow.  相似文献   

3.
Magnetophoretic isolation of biological cells in a microfluidic environment has strong relevance in biomedicine and biotechnology. A numerical analysis of magnetophoretic cell separation using magnetic microspheres in a straight and a T-shaped microfluidic channel under the influence of a line dipole is presented. The effect of coupled particle–fluid interactions on the fluid flow and particle trajectories are investigated under different particle loading and dipole strengths. Microchannel flow and particle trajectories are simulated for different values of dipole strength and position, particle diameter and magnetic susceptibility, fluid viscosity and flow velocity in both the microchannel configurations. Residence times of the captured particles within the channel are also computed. The capture efficiency is found to be a function of two nondimensional parameters, α and β. The first parameter denotes the ratio of magnetic to viscous forces, while the second one represents the ratio of channel height to the distance of the dipole from the channel wall. Two additional nondimensional parameters γ (representing the inverse of normalized offset distance of the dipole from the line of symmetry) and σ (representing the inverse of normalized width of the outlet limbs) are found to influence the capture efficiency in the T-channel. Results of this investigation can be applied for the selection of a wide range of operating and design parameters for practical microfluidic cell separators.  相似文献   

4.
Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation efficiency of the passive separator device, and the separation efficiency of 66.6 % was achieved. The optimum purity efficiency of 70 % was achieved for 1:100 dilution times.  相似文献   

5.
We demonstrate the use of heat to count microscopic particles. A thermal particle detector (TPD) was fabricated by combining a 500-nm-thick silicon nitride membrane containing a thin-film resistive temperature detector with a silicone elastomer microchannel. Particles with diameters of 90 and 200 μm created relative temperature changes of 0.11 and ?0.44 K, respectively, as they flowed by the sensor. A first-order lumped thermal model was developed to predict the temperature changes. Multiple particles were counted in series to demonstrate the utility of the TPD as a particle counter.  相似文献   

6.
This paper reported an efficient method to size-selective separate magnetic nanospheres using a self-focusing microfluidic channel equipped with a permanent magnet. Under external magnetic field, the magnetophoresis force exerted on particles leads to size-dependent deflections from their laminar flow paths and results in effective particles separation. By adjusting the distance between magnet and main path of channel, we obtained two monodisperse nanosphere samples (Ca. 90 nm, Ca. 160 nm) from polydispersing particles solution whose diameters varied from 40 to 280 nm. Based on the magnetostatic and laminar flow models, numerical simulations were also used to predict and optimize the nanospheres migrations. Two thresholds of particles diameters were obtained by the simulations and diverse at each position of magnet. Therefore, appropriate position of the magnet could be determined at a certain particle sizes’ range when the flow rate of the two inlets remains unchanged.  相似文献   

7.
This paper presents a continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic device for magnetic bead-based bioassays. Two functions, electrocoalescence and magnetic particle manipulation, are performed in this device. A pair of charging metallic needles is inserted into two aqueous channels of the device. By electrostatic force, two different solutions can be merged to be mixed at a junction of droplet generation. The manipulation of magnetic particles is achieved using an externally applied magnetic field. The magnetic particles are separated by the magnetic field to one side of the droplet and extracted by splitting the droplet into two daughter droplets: one contains the majority of the magnetic particles and the other is almost devoid of magnetic particles. The applicability of the continuous-flow in-droplet magnetic particle separation is demonstrated by performing a proof-of-concept immunoassay between streptavidin-coated magnetic beads and biotin labelled with fluorescence. This approach will be useful for various biological and chemical analyses and compartmentalization of small samples.  相似文献   

8.
This paper describes a thread-based microfluidic system for rapid and low-cost electrophoresis separation and electrochemical (EC) detection of ion samples. Instead of using liquid channel for sample separation, thin polyester threads of various diameters are used as the routes for separating the samples with electrophoresis. Hot-pressed PMMA chip with protruding sleeper structures are adopted to set up the polyester threads and for electrochemical detection of the ion samples on the thread. Plasma treatment greatly improves the wetability of thin threads and surface quality of the threads. The measured electrical currents on plasma treated threads are 10 times greater than the threads without treatment. Results indicate that nice redox signals can be obtained by measuring ferric cyanide salt on the polyester thread. The estimated detection limit for EC sensing of potassium ferricyanide (K3Fe(CN)6) is around 6.25 μM using the developed thread-based microfluidic device. Mixed ion samples (Cl?, Br? and I?) and bio-sample are successfully separated and detected using the developed thread-based microfluidic device.  相似文献   

9.
We numerically investigate the separation of polygonal particles through an array of solid obstacles in microfluidic devices. Particle–fluid, particle–particle and particle–wall interactions are all considered in our numerical method. Firstly, the separation of circular particles based on size is simulated and the relationship of the migration angle and forcing angle by our simulations is coincided with the experimental results. Then, the simulations of polygon particle separation based on shape are carried out. The results show that the shape of particles can be used for particle separation through an array of solid obstacles. Through reasonable design of the shape of obstacles, separation of polygon particles can be achieved. In addition, the results indicate that our numerical method has the potential to substantially improve the design and optimization of microfluidic devices for the separation of particles.  相似文献   

10.
11.
Quite puzzling issue in biology is how sperm cells are selected naturally where human sperm has to maintain a correct swimming behavior during the various stages of reproduction process. In nature, sperm has to compete a long journey from cervix to oocyte to stand a chance for fertilization. Although various guidance mechanisms such as chemical and thermal gradients are proposed previously, these mechanisms may only be relevant as sperm reaches very close to the oocyte. Rheotaxis, a phenomenon where sperm cells swim against the flow direction, is possibly the long-range sperm guidance mechanism for successful fertilization. A little is known quantitatively about how flow shear effects may help guide human sperm cells over long distances. Here, we have developed microfluidic devices to quantitatively investigate sperm rheotaxis at various physiological flow conditions. We observed that at certain flow rates sperm actively orient and swim against the flow. Sperm that exhibit positive rheotaxis show better motility and velocity than the control (no-flow condition), however, rheotaxis does not select sperm based on hyaluronic acid (HA) binding potential and morphology. Morphology and HA binding potential may not be a significant factor in sperm transport in natural sperm selection.  相似文献   

12.
An optical sensor combined total analysis system (TAS) is thought to be one of the most powerful functional elements needed to realize a “ubiquitous human healthcare” system. In accordance with this concept, we have proposed a fundamental structure of detecting side scattered light from a minute cell or particle running along a microfluidic channel, partially utilizing the channel filled with water or saline solution as a light waveguide. Based on this concept, we have fabricated a trial-manufactured optical TAS chip and carefully evaluated its side scattered light measuring performance in in-plane direction, supplying and detecting visible laser power by using multiple optical fibers and their precise positioning mechanisms. We have successfully obtained experimental results of both transmitted light power change and that of side scattered light, and we confirmed that there was a strong relationship between their signal waveforms. Furthermore, we have developed a hybrid numerical calculation method on the basis of the finite-difference time-domain method, in addition to the beam propagation method. Based on this hybrid method, we tried to compare results between the experimental inverse pulse of transmitted light and a pulse of side scattered light, and those based on numerical calculations. Excellent qualitative accordance was obtained between the inverse pulse of numerical and experimental results. In contrast, the experimental pulse of side scattered light indicated a considerably spread base in comparison to the numerical results.  相似文献   

13.
Microfluidic patterns of 100 μm in width and 50 μm height were replicated from a master using vacuum casting with silicone rubber. These silicone copies are subjected to thorough analysis for dimensional accuracy against the master pattern. Analysis of experimental results shows repeatability of the silicone rubber molds. To test the limits of vacuum casting with silicone rubber, an attempt was undertaken to replicate 8 μm microchannel and submicron features. The results show that casting of microfluidic channel via vacuum casting has high repeatability.  相似文献   

14.
A flexible strategy for the on-demand control of the particle enrichment and positioning in a microfluidic channel is proposed and demonstrated by the use of a locally controlled floating metal electrode attached to the channel bottom wall. The channel is subjected to an axially acting global DC electric field, but the degree of charge polarization of the floating electrode is governed largely by a local control of the voltage applied to two micron-sized control electrodes (CEs) on either side of the floating electrode (FE). This strategy allows an independent tuning of the electrokinetic phenomena engendered by the floating electrode regardless of the global electric field across the channel, thus making the method for particle manipulation far more versatile and flexible. In contrast to a dielectric microchannel wall possessing a nearly uniform surface charge (or zeta potential), the patterned metal strip (floating electrode) is polarized under electric field resulting in a non-uniform distribution of the induced surface charge with a zero net surface charge, and accordingly induced-charge electro-osmotic (ICEO) flow. The ICEO flow can be regulated by the control electric field through tuning the magnitude and polarity of the voltage applied to the CEs, which in turn affects both the hydrodynamic field as well as the particle motion. By controlling the control electric field, on-demand control of the particle enrichment and its position inside a microfluidic channel has been experimentally demonstrated.  相似文献   

15.
It has long been thought that an optical sensor, such as a light waveguide implemented total analysis system (TAS), is one of the functional components that will be needed to realize a “ubiquitous human healthcare system” in the near future. We have already proposed the fundamental structure for a light waveguide capable of illuminating a living cell or particle running along a microfluidic channel, as well as of detecting fluorescence even from the extremely weak power of such a minute particle. In order to develop novel functions to detect the internal structure of living cells quickly, an angular scanning method that sequentially changes the direction of illumination of the minute cell or particle may be crucial. In this paper, we investigate fluorescence detection from moving particles by switching the laser power delivery path of plural light waveguides as a preliminary experiment toward this novel method. To construct an experimental system able to incorporate a switching light source mechanism cost effectively, we utilized a conventional TAS chip with plural waveguide pairs arranged in parallel, and a forced vibration mechanism on an optical fiber tip by a piezoelectric actuator. With this system, we performed an experiment to detect extremely weak fluorescence using micro particles with a fluorescent substance attached and an optical TAS chip that incorporated a microfluidic channel and three pairs of laser-power-delivering light waveguide cores. We successfully obtained clear, quasi-triangular-shaped pulses in fluorescent signals from resin particles running across the intersection under three different conditions: (1) a particle with approximately the same velocity as that of a forced-vibrated optical fiber tip of approximately 700 mm/s, (2) a particle with velocity 1 digit smaller than that of an optical fiber tip, and (3) a particle with velocity approximately 1/20 that of an optical fiber tip.  相似文献   

16.
We report a parallelized capillary microfluidic device for enhanced production rate of monodisperse polymersomes. This device consists of four independent capillary microfluidic devices, operated in parallel; each device produces monodisperse water-in-oil-in-water (W/O/W) double-emulsion drops through a single-step emulsification. During generation of the double-emulsion drops, the innermost water drop is formed first and it triggers a breakup of the middle oil phase over wide range of flow rates; this enables robust and stable formation of the double-emulsion drops in all drop makers of the parallelized device. Double-emulsion drops are transformed to polymersomes through a dewetting of the amphiphile-laden middle oil phase on the surface of the innermost water drop, followed by the subsequent separation of the oil drop. Therefore, we can make polymersomes with a production rate enhanced by a factor given by the number of drop makers in the parallelized device.  相似文献   

17.
Magnetic bead-based immunoassays in the microfluidic format have attracted particular interest as it has several advantages over other microfluidic separation techniques. Magnetic split-flow thin fractionation (SPLITT) is a compact version of microfluidic sorting where a bidispersed or polydispersed suspension of magnetic particle–analyte conjugates can be selectively isolated into co-flowing streams of nearly monodispersed particles. Although the device offers capability of identifying and separating more than one target analytes simultaneously, its performance is sensitive to the slightest variation of the operating condition. Herein, we have numerically investigated the performance of a microscale magnetic SPLITT device. Using a coupled Eulerian–Lagrangian approach, we have evaluated the capture efficiency (CE) and separation index (SI) for each particle type collected at their designated outlet of the SPLITT device and identified the best regimes of operating parameters. While the CE figures are found to be best represented by a group variable Π, the SI values are better represented as function of the product of the group variables γ and β; the SI versus Π plots clearly separate into two basic trends: one for constant β (i.e., varying γ) and the other for constant γ (i.e., varying β). Our study prescribes the desired operating regimes of a microfluidic magnetophoretic SPLITT device in a practical immunomagnetic separation application.  相似文献   

18.
19.
Microfluidic magnetophoresis is an effective technique to separate magnetically labeled bioconjugates in lab-on-a-chip applications. However, it is challenging and expensive to fabricate and integrate microscale permanent magnets into microfluidic devices with conventional methods that use thin-film deposition and lithography. Here, we propose and demonstrate a simple and low-cost technique to fabricate microscale permanent magnetic microstructures and integrate them into microfluidic devices. In this method, microstructure channels were fabricated next to a microfluidic channel and were injected with a liquid mixture of neodymium (NdFeB) powders and polydimethylsiloxane (PDMS). After the mixture was cured, the resulted solid NdFeB–PDMS microstructure was permanently magnetized to form microscale magnets. The microscale magnets generate strong magnetic forces capable of separating magnetic particles in microfluidic channels. Systematic experiments and numerical simulations were conducted to study the geometric effects of the microscale magnets. It was found that rectangular microscale magnets generate larger \(({\mathbf {H}}\cdot \nabla ) {\mathbf {H}}\) which is proportional to magnetic force and have a wider range of influence than the semicircle or triangle magnets. For multiple connected rectangular microscale magnet, additional geometric parameters, including separation distance, height and width of the individual elements, further influence the particle separation and were characterized experimentally. With an optimal size combination, complete separation of yeast cells and magnetic microparticles of similar sizes (\(4\;\upmu \hbox {m}\)) was demonstrated with the multi-rectangular magnet microfluidic device.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号