首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global roaming in next-generation networks   总被引:5,自引:0,他引:5  
Next-generation mobile/wireless networks are already under preliminary deployment. Mobile/wireless all-IP networks are expected to provide a substantially wider and enhanced range of services. However, an evolutionary rather than revolutionary approach to the deployment of a global all-IP wireless/mobile network is expected. To support global roaming, next-generation networks will require the integration and interoperation of mobility management processes under a worldwide wireless communications infrastructure. In this article global roaming is addressed as one of the main issues of next-generation mobile networks. Apart from the physical layer connectivity and radio spectrum allocation plans, mobility in a hierarchical structured scheme is discussed. An all-IP wireless/mobile network combined with inherited mobility schemes of each network layer and Mobile IP extensions is proposed. In this respect the mobility management mechanisms in WLAN, cellular, and satellite networks are analyzed, and an all-IP architecture is described and an enhanced roaming scenario presented  相似文献   

2.
In the future, wireless and mobile users will have increased demands for seamless roaming across different types of wireless networks, quality of service guarantees and support of different types of services. This awareness has led to research activities directed towards inter-system and global roaming and can be noticed in the numerous products like multimode handsets, inter-working gateways and some ongoing standards and research work on signaling protocols for inter-system roaming. This article proposes a global mobility management framework. The framework is like an overlay network comprising of Inter-System Interface Control Units IICU to support inter-network communication and control for Location Management. The protocols and functions of this framework will be distributed and exist partly within the wireless networks and partly within the core-network. A hierarchy introduced among the IICUs will accommodate for the varying mobility coverage required by the mobile user. The IICU may be configured to perform various functions depending on its placement in the hierarchy of the framework. This approach aims to optimize across call set up delays, signaling traffic, database processing, handoff facilitation for seamless roaming and QoS mapping and negotiations as the user moves across different wireless networks. It avoids centralized database dependency with its associated single-point bottleneck and failures. We restrict our analysis of the framework to a 2-network and a 3-network roaming scenario. The presentation has been further restricted to cost and delay analysis of the location update and call delivery procedures. We have taken into account the signalling requirements when the mobile user roams across networks with and without an active call. Nirmala Shenoy is Associate Professor at the Information Technology department at RIT. She has several years of teaching and research experience while working in Germany, Singapore and Australia before she moved to USA. She is an avid researcher in the wireless networks area and has technically led several wireless network projects to success. She holds a Ph.D. in computer science from the University of Bremen, Germany, Masters in Applied Electronics and Bachelors in Electronics and Telecommunications Engineering both from Madras University in India. Professor Shenoy is interested in research in the area mobility management and modeling for wireless networks, Quality of service in wireless networks and the Internet.  相似文献   

3.
In heterogeneous wireless network environment, wireless local area network (WLAN) is usually deployed within the coverage of a cellular network to provide users with the convenience of seamless roaming among heterogeneous wireless access networks. Vertical handoffs between the WLAN and the cellular network maybe occur frequently. As for the vertical handoff performance, there is a critical requirement for developing algorithms for connection management and optimal resource allocation for seamless mobility. In this paper, we develop a mathematical model for vertical handoff decision problem, and propose a multi-objective optimization immune algorithm-based vertical handoff decision scheme. The proposed scheme can enable a wireless access network not only to balance the overall load among all base stations and access points but also maximize the collective battery lifetime of mobile terminals. Results based on a detailed performance evaluation study are also presented here to demonstrate the efficacy of the proposed scheme.  相似文献   

4.
Efficient mobility management for vertical handoff between WWAN and WLAN   总被引:15,自引:0,他引:15  
As we move toward next-generation all-IP wireless networks, we are facing the integration of heterogeneous networks, such as WWAN and WLAN, where vertical handoff is required. In vertical handoff between WWAN and WLAN, mobile hosts should be able to move freely across different networks while satisfying QoS requirements for a variety of applications. In order to achieve seamless handoff and maintain continuity of connection, we propose a novel mobility. management system that integrates a connection manager to detect network condition changes in a timely and accurate manner, and a virtual connectivity manager that uses an end-to-end principle to maintain a connection without additional network infrastructure support. A prototype system was built to test the effectiveness of the proposed system. Experiments show that seamless roaming between WLAN and WWAN can be achieved, and much better performance can be obtained than with the traditional scheme.  相似文献   

5.
Wireless LAN access network architecture for mobile operators   总被引:16,自引:0,他引:16  
The evolution of IP-based office applications has created a strong demand for public wireless broadband access technology offering capacity far beyond current cellular systems. Wireless LAN access technology provides a perfect broadband complement for the operators' existing GSM and GPRS services in an indoor environment. Most commercial public wireless LAN solutions have only modest authentication and roaming capability compared to traditional cellular networks. This article describes a new wireless LAN system architecture that combines the WLAN radio access technology with mobile operators' SIM-based subscriber management functions and roaming infrastructure. In the defined system the WLAN access is authenticated and charged using GSM SIM. This solution supports roaming between cellular and WLAN access networks and is the first step toward an all-IP network architecture. The proto-type has been implemented and publicly verified in a real mobile operator network  相似文献   

6.
This article addresses several challenges related to the evolution toward seamless interworking of wireless LAN and 3G cellular networks. The main objective is to evaluate the conditions and restrictions under which seamless continuity of video sessions across the two networks is feasible. For this purpose, we formulate a number of practical interworking scenarios, where UMTS subscribers with ongoing real-time video sessions hand over to WLAN, and we study the feasibility of seamless continuity by means of simulation. We particularly quantify the maximum number of UMTS subscribers that can be admitted to the WLAN, subject to maintaining the same level of UMTS QoS and respecting the WLAN policies. Our results indicate that the WLAN can support seamless continuity of video sessions for only a limited number of UMTS subscribers, which depends on the applied WLAN policy, access parameters, and QoS requirements. In addition to this study, we do address several other issues that are equally important to seamless session continuity, such as the QoS discrepancies across UMTS and WLAN, the vertical handover details, and various means of access control and differentiation between regular WLAN data users and UMTS subscribers. The framework for discussing these issues is created by considering a practical UMTS/WLAN interworking architecture.  相似文献   

7.
Extensions for Internet QoS paradigms to mobile IP: a survey   总被引:1,自引:0,他引:1  
Mobile IP has been chosen as the core mobility management mechanism for wireless LANs, 3G cellular networks, and, most recently, aeronautical networks. It is viewed as a key element in providing a universal roaming solution across different wireless access technologies. However, mobile IP in its basic form inherits the IP incapability to provide QoS guarantees. This results in mobile IP's lack of support for seamless intradomain mobility. This article surveys extensions that have been proposed to enhance the QoS functionality of mobile IP. It gives a brief overview of mobile IP and Internet QoS paradigms, and describes their general shortcomings with regard to QoS and mobility, respectively. It then discusses the extensions that have been proposed in the literature and provides a qualitative comparison.  相似文献   

8.
SIP-based vertical handoff between WWANs and WLANs   总被引:3,自引:0,他引:3  
Future-generation wireless networks have been envisioned as the integration of various wireless access networks, including both wireless wide area networks and wireless local area networks. In such a heterogeneous network environment, seamless mobility support is the basis of providing uninterrupted wireless services to mobile users roaming between various wireless access networks. Because of transparency to lower-layer characteristics, ease of deployment, and greater scalability, the application-layer-based session initiation protocol has been considered the right candidate for handling mobility in heterogeneous wireless networks. However, SIP entails application-layer transport and processing of messages, which may introduce considerable delay. As a case study of the performance of mobility management protocols in the heterogeneous wireless networks, we analyze the delay associated with vertical handoff using SIP in the WLAN-UMTS internetwork. Analytical results show that WLAN-to-UMTS handoff incurs unacceptable delay for supporting real-time multimedia services, and is mainly due to transmission of SIP signaling messages over erroneous and bandwidth-limited wireless links. On the other hand, UMTS-to-WLAN handoff experiences much less delay, mainly contributed by the processing delay of signaling messages at the WLAN gateways and servers. While the former case requires the deployment of soft handoff techniques to reduce the delay, faster servers and more efficient host configuration mechanisms can do the job in the latter case.  相似文献   

9.
Wireless communications have developed rapidly and have been applied for many services. Cellular (the third-generation) mobile networks and wireless local area network (WLAN) are two important technologies for providing wireless communications. The third-generation (3G) networks provide wider service areas, and “always-o” and ubiquitous connectivity with low-speed data rate. WLAN networks offer higher data rate and the easy compatibility of wired Internet, but cover smaller areas. In fact, 3G and WLAN possess complementary properties. Integrating 3G and WLAN networks may offer subscribers high-speed wireless data services and ubiquitous connectivity. For integrating two heterogeneous networks, several issues should be involved, authentication, billing, quality of service, and seamless roaming between 3G and WLAN networks. In this paper, we address the authentication and billing problems and propose two protocols that provide both authentication and billing services. One protocol utilizes a one-time password approach to authenticate subscribers. This protocol is efficient in both computation time and authentication procedures. Because of the restrictions of the password-based approach, this protocol could not offer the non-repudiation property for the billing problem. Another protocol is constructed on a public-key-based system (i.e., certificates). Although it requires more computation time than the password-based approach, non-repudiation is guaranteed. Performance analysis simulation results are given to validate our two protocols.  相似文献   

10.
Resource management for QoS support in cellular/WLAN interworking   总被引:3,自引:0,他引:3  
To provide mobile users with seamless Internet access anywhere and anytime/ there is a strong demand for interworking mechanisms between cellular networks and wireless local area networks in the next-generation all-IP wireless networks. In this article we focus on resource management and call admission control for QoS support in cellular/WLAN interworking. In specific, a DiffServ interworking architecture with loose coupling is presented. Resource allocation in the interworking environment is investigated/ taking into account the network characteristics, vertical handoff, user mobility, and service types. An effective call admission control strategy with service differentiation is proposed for QoS provisioning and efficient resource utilization. Numerical results demonstrate the effectiveness of the proposed call admission control scheme.  相似文献   

11.
无线通信网络的移动性管理   总被引:1,自引:0,他引:1  
田永春  郭伟 《电信科学》2003,19(12):17-20
未来无线通信网络的两个最重要的研究问题就是宽带和无缝漫游,而移动性管理是实现网络间无缝漫游的关键难题之一。本对移动性管理涉及的各个方面进行了简要的概述,首先介绍了移动性管理的分类和它对协议层次的影响,接着介绍了移动性管理的一般性框架和主要的协议特点,最后介绍了一些关键的研究问题和研究热点。  相似文献   

12.
解觯  徐国鑫  张平 《世界电信》2003,16(8):38-41
首先比较了WLAN和GPRS两种技术的特点;接着提出了一种基于Mobile IP的支持WLAN/GPRS网络无缝漫游的融合方案,它利用WLAN网络与GPRS网络在技术上的互补性,可快速为用户提供支持无缝漫游的数据业务。此方案基于如下基本思想:尽量不对GPRS网络做任何修改,而主要通过对对WLAN网络结构进行调整来实现两者的融合。在描述此方案的主要工作流程时,包括以下方面的内容:移动接点接入/附着、WLAN到GPRS的漫游,GPRS到WLAN的漫游、WLAN网络可用性的判断、计费等。  相似文献   

13.
Design and implementation of a WLAN/cdma2000 interworking architecture   总被引:9,自引:0,他引:9  
The combination of 3G and WLAN wireless technologies offers the possibility of achieving anywhere, anytime Internet access, bringing benefits to both end users and service providers. We discuss interworking architectures for providing integrated service capability across widely deployed 3G cdma2000-based and IEEE 802.11-based networks. Specifically, we present two design choices for integration: tightly coupled and loosely coupled, and recommend the latter as a preferred option. We describe in detail the implementation of a loosely coupled integrated network which provides two kinds of roaming services, a SimpleIP service and a Mobile-IP service. We present, in detail, two new components used to build these services: a network element called a WLAN integration gateway deployed in WLAN networks; a client software on the mobile device. For a mobile device with interfaces to both technologies, our system supports seamless handoff in the presence of overlapping radio coverage.  相似文献   

14.
《IEEE network》2005,19(4):66-72
The main challenge in the development of future wireless communication systems is to provide users with a wide range of services across different radio access technologies through a single mobile terminal, while maintaining the minimum QoS requirements, and ideally with no limits on the coverage area, mobility or radio conditions. Thus, the need for seamless interworking between heterogeneous wireless communication systems consisting of multiple radio access technologies and overlapping networks emerges. In this article we address the main issues that arise while implementing the interoperability mechanisms between two different radio access networks, with emphasis on UMTS-HSDPA and WLAN (HIPERLAN/2). Two interoperability mechanisms are introduced and described in detail: initial user assignment (optimal network selection) and intersystem handover. Both mechanisms are activated via the optimization of a suitably defined cost function which takes into account all the appropriate system level parameters that trigger the interoperability process. Finally, we investigate the overall performance of the proposed mechanisms by means of a software simulation platform. A number of simulations have been carried out in order to demonstrate the performance enhancements achieved by the proposed mechanisms in terms of unsatisfied users, dropped handovers, and system throughput.  相似文献   

15.
Next-generation wireless systems are envisioned to have an IP-based infrastructure with the support of heterogeneous access technologies. One of the research challenges for next generation all-IP-based wireless systems is the design of intelligent mobility management techniques that take advantage of IP-based technologies to achieve global roaming among various access technologies. Next-generation wireless systems call for the integration and interoperation of mobility management techniques in heterogeneous networks. In this article the current state of the art for mobility management in next-generation all-IP-based wireless systems is presented. The previously proposed solutions based on different layers are reviewed, and their qualitative comparisons are given. A new wireless network architecture for mobility management is introduced, and related open research issues are discussed in detail.  相似文献   

16.
In next-generation wireless systems, one of the major features that is different from the current personal communication service systems is the seamless global roaming. The mobile subscribers will be allowed to move freely across different networks while maintaining their quality of service for a variety of applications. To meet this demand, the signaling protocol of mobility management must be designed, supporting location registration and call delivery for roaming users who move beyond their home network. A new signaling protocol is proposed, emphasizing the active location registration for ongoing services during the mobile subscribers' movement. Another important goal of this new protocol is to reduce the overhead caused by mobility management so that the signaling traffic load and consumption of network resources can be reduced. The new protocol efficiently reduces the latency of call delivery and call loss rate due to crossing wireless systems with different standards or signaling protocols. The numerical results reveal that the proposed protocol is effective in improving the overall system performance  相似文献   

17.
This article proposes criteria and mechanisms that achieve seamless inter-working between the multi-radio access technologies that will compose the fourth-generation (4G) wireless mobile environment. We address the problem of incorporating system interoperability in order to provide the user with seamless mobility across different radio access technologies; namely we focus on inter-working UMTS-High Speed Downlink Packet Access (HSDPA) and WLAN networks, as these two networks are believed to be major components of the 4G wireless network. Interoperability results in providing the user with a rich range of services across a wide range of propagation environment and mobility conditions, using a single terminal. Specifically, the article aims at defining the criteria and mechanisms for interoperability between the two networks. Our approach considers the use of Cost functions to monitor the essential parameters at the system level in order to trigger an interoperability procedure. Initial user assignment and inter-system handover are considered the incidents that initiate the interoperability algorithm execution. The overall objective of this work is to assess the performance of our developed interoperability platform and to optimize system performance by guarantying a minimum QoS requirement and maximizing network capacity.  相似文献   

18.
无线网络中的移动性是指对终端位置的改变而保证持续接入服务,并保持与之通信的能力。移动性管理就是为用户和终端提供相应的功能以保证异构网络的漫游和服务的无缝移动,并使用户与网络的联系达到最佳状态。针对未来数据业务具有高速、突发性的特点,LTE核心网发生了很大的变化,主要是采取了扁平化结构。在这种系统架构下怎样为用户提供更好的服务,LTE移动性管理成为目前该领域研究工作的重点。  相似文献   

19.
Trends in fourth generation (4G) wireless networks are clearly identified by the full-IP concept where all traffic (data, control, voice and video services, etc.) will be transported in IP packets. Many proposals are being made to enhance IP with the functionalities necessary to manage the mobility of nodes, so that networks can provide global seamless roaming between heterogeneous wireless and wired networks. In this paper, we focus on the management of universal mobility, including both large scale macro-mobility and local scale micro-mobility. We propose a hierachical architecture (i) extending micro-mobility management of a wireless access network to an ad-hoc access network, (ii) connecting this ad-hoc network to the Internet and (iii) integrating Mobile IP and OLSR, a routing protocol for ad-hoc networks, to manage universal mobility. This architecture is validated by an implementation based on DynamicsMobile-IP and OLSR version 7. We show how the brodcast of Mobile-IP Agent Advertisement can be optimized using OLSR MPR-flooding.  相似文献   

20.
Rapid progress in research and development of wireless networking and communication technologies have created different types of wireless systems (e.g., Bluetooth, IEEE 802.11, UMTS, and satellite networks). These systems are envisioned to coordinate with each other to provide ubiquitous high-data-rate services to mobile users. In this article, the architecture for ubiquitous mobile communications (AMC) is introduced that integrates these heterogeneous wireless systems. AMC eliminates the need for direct service level agreements among service providers by using a third party, a network interoperating agent. Instead of deploying a totally new infrastructure, AMC extends the existing infrastructure to integrate heterogeneous wireless systems. It uses IP as the interconnection protocol. By using IP as the gluing protocol, transparency to the heterogeneities of the individual systems is achieved in AMC. Third-party-based authentication and billing algorithms are designed for AMC. New mobility management protocols are also developed to support seamless roaming between different wireless systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号