首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Structural alterations of the Wilms' tumor locus (WT1) at 11p13 have been implicated in the etiology of two human cancers--Wilms' tumor (WT), a pediatric renal malignancy, and Desmoplastic Small Round Cell Tumor (DSRCT), an aggressive cancer of the abdominal serosal lining with predilection for male adolescents. Germline mutations within the WT1 tumor suppressor gene predispose to WT and are associated with congenital malformations of the urogenital system, and somatic mutations are associated with initiation of transformation in WTs. In DSRCT, a recurrent translocation, t(11;22)(p13;q12), fuses the amino terminal domain of the EWS1 gene product to three of the four WT1 zinc fingers. Two EWS/WT1 isoforms are generated as a result of an alternative splicing event between zinc fingers III and IV, inserting or removing three amino acids (+/- KTS). We demonstrate that introduction of EWS/WT1(-KTS) into NIH3T3 cells causes their tumorigenic transformation as determined by: formation of transformed foci on a monolayer of cells; anchorage-independent growth; and tumor formation in nude mice. EWS/WT1(+KTS) showed no transforming potential in these assays. These results indicate the oncogenic effect of the t(11;22) translocation is mediated by the EWS/WT1(-KTS) isoform and that fusion of the EWS amino terminal domain to the WT1 DNA binding domain produces a chimeric product showing a gain of function.  相似文献   

5.
6.
We have sequenced the breakpoint regions in one acute myeloid leukemia (AML) with t(16;21)(p11;q22) resulting in the formation of a FUS/ERG hybrid gene and in four myxoid liposarcomas (MLS), three of which had the translocation t(12;16) (q13;p11) and a FUS/CHOP fusion gene and one with t(12;22;20)(q13;q12;q11) and an EWS/CHOP hybrid gene. The breakpoints were localized to intron 7 of FUS, intron 1 of CHOP, an intronic sequence of ERG and intron 7 of EWS. In two MLS cases with t(12;16) and in the AML, the breaks in intron 7 of FUS had occurred close to each other, a few nucleotides downstream from a TG dinucleotide repeat region. The break in the two MLS had occurred in the same ATGGTG hexamer and in the AML 40 nucleotides upstream from the hexamer. The third case of t(12;16) MLS had a break upstream and near a TC-dinucleotide repeat region and a sequence similar to the chi bacterial recombination element was found to flank the breakpoint. In the MLS with the EWS/ CHOP hybrid gene, the break in intron 7 of EWS had occurred close to an Alu sequence. Similarly, in all 4 MLS, the breaks in intron 1 of CHOP were near an Alu sequence. No Alu or other repetitive sequences were found 250 bp upstream or downstream from the break in the ERG intron involved in the AML case. In the AML, the MLS with ESW/CHOP and in one MLS with FUS/CHOP there were one, two and six, respectively, nucleotide identity between the contributing germline sequences in the breakpoint. In the other two MLS cases, two and three extra nucleotides of unknown origin were inserted between the FUS and CHOP sequences. At the junction and/or in its close vicinity, identical oligomers, frequently containing a trinucleotide TGG, were found in both partner genes. Our data thus show that all four genes-FUS, EWS, CHOP and ERG-contain characteristic motifs in the breakpoint regions which may serve as specific recognition sites for DNA-binding proteins and have functional importance in the recombination events taking place between the chromosomes. Different sequence motifs may, however, play a role in each individual case.  相似文献   

7.
8.
9.
The mammalian rasGAPs constitute a group of widely expressed proteins involved in the negative regulation of ras-mediated signaling. In this study we have isolated a novel human gene, RASAL (Ras GTPase-activating-like) and its murine ortholog, MRASAL which are most similar to the GAP1 family of rasGAP proteins, based upon the presence and organization of specific conserved domains. Full-length human and murine mRNA sequences are predicted to encode 804 and 799 amino acid polypeptides, respectively. Sequence analysis of these two proteins revealed the presence of two N-terminal calcium-dependent phospholipid binding C2 domains, a conserved GAP related domain (GRD) and a C-terminal pleckstrin homology (PH) domain. Northern blot and mRNA in situ hybridization analyses indicate that RASAL, in contrast to other mammalian rasGAP proteins, has a limited expression pattern; RASAL is highly expressed in the follicular cells of the thyroid and the adrenal medulla and expressed at lower levels in brain, spinal cord and trachea. Human RASAL has been localized by radiation hybrid mapping to chromosome 12q23-24.  相似文献   

10.
11.
The interaction between human DNA polymerase beta (pol beta) and DNA ligase I, which appear to be responsible for the gap filling and nick ligation steps in short patch or simple base excision repair, has been examined by affinity chromatography and analytical ultracentrifugation. Domain mapping studies revealed that complex formation is mediated through the non-catalytic N-terminal domain of DNA ligase I and the N-terminal 8-kDa domain of pol beta that interacts with the DNA template and excises 5'-deoxyribose phosphate residue. Intact pol beta, a 39-kDa bi-domain enzyme, undergoes indefinite self-association, forming oligomers of many sizes. The binding sites for self-association reside within the C-terminal 31-kDa domain. DNA ligase I undergoes self-association to form a homotrimer. At temperatures over 18 degreesC, three pol beta monomers attached to the DNA ligase I trimer, forming a stable heterohexamer. In contrast, at lower temperatures (<18 degreesC), pol beta and DNA ligase I formed a stable 1:1 binary complex only. In agreement with the domain mapping studies, the 8-kDa domain of pol beta interacted with DNA ligase I, forming a stable 3:3 complex with DNA ligase I at all temperatures, whereas the 31-kDa domain of pol beta did not. Our results indicate that the association between pol beta and DNA ligase I involves both electrostatic binding and an entropy-driven process. Electrostatic binding dominates the interaction mediated by the 8-kDa domain of pol beta, whereas the entropy-driven aspect of interprotein binding appears to be contributed by the 31-kDa domain.  相似文献   

12.
13.
14.
Calreticulin (CRT) is located predominantly in the endoplasmic reticulum (ER) of cells, where it functions as a quality control controller of protein folding. However, CRT is also a prevalent autoantigen in patients with systemic lupus erythematosus (SLE), where its release from the cell may arise as a results of dysfunctional apoptosis and inefficient removal of ER vesicles, which are an abundant source of CRT and other autoantigens. Indicative of this is the presence of autoantibodies against CRT in the sera of 40-60% of all SLE patients. Once released into the circulation, CRT might bind directly to C1q and we have suggested that this association may result in a defect in C1q-mediated clearance of antigen-antibody complexes. It has been previously shown that CRT under physiological salt conditions binds to the globular head of C1q. It is known that the globular head region of C1q binds to the CH2 domain in the Fc portion of immunoglobulin gamma (IgG). The N-terminal half of CRT contains a number of short regions of 7-10 amino acids that show sequence similarity to the putative C1q binding region in the CH2 domain of IgG. By use of a series of 92 overlapping CRT synthetic peptides, a number of C1q binding sites on the CRT molecule have been identified, including several containing a CH2-like motif similar to the ExKxKx C1q binding motif found in the CH2 domain of IgG. A number of these peptides were shown to inhibit binding of C1q to IgG and reduce binding of native CRT to C1q. Moreover, several of the peptides were capable of inhibiting the classical pathway of complement activation. These studies have identified specific binding sites on the CRT molecule for C1q and lend support to the hypothesis that interaction of CRT with C1q may interfere with the ability of C1q to associate with immune complexes in autoimmune-related disorders.  相似文献   

15.
The repressor protein of bacteriophage P22 binds to DNA as a homodimer. This dimerization is absolutely required for DNA binding. Dimerization is mediated by interactions between amino acids in the carboxyl (C)-terminal domain. We have constructed a plasmid, p22CT-1, which directs the overproduction of just the C-terminal domain of the P22 repressor (P22CT-1). Addition of P22CT-1 to DNA-bound P22 repressor causes the dissociation of the complex. Cross-linking experiments show that P22CT-1 forms specific heterodimers with the intact P22 repressor protein, indicating that inhibition of P22 repressor DNA binding by P22CT-1 is mediated by the formation of DNA binding-inactive P22 repressor:P22CT-1 heterodimers. We have taken advantage of the highly conserved amino acid sequences within the C-terminal domains of the P22 and 434 repressors and have created chimeric proteins to help identify amino acid regions required for dimerization specificity. Our results indicate that the dimerization specificity region of these proteins is concentrated in three segments of amino acid sequence that are spread across the C-terminal domain of each of the two phage repressors. We also show that the set of amino acids that forms the cooperativity interface of the P22 repressor may be distinct from those that form its dimer interface. Furthermore, cooperativity studies of the wild-type and chimeric proteins suggest that the location of cooperativity interface in the 434 repressor may also be distinct from that of its dimerization interface. Interestingly, changes in the dimer interface decreases the ability of the 434 repressor to discriminate between its wild-type binding sites, O(R)1, O(R)2, and O(R)3. Since 434 repressor discrimination between these sites depends in large part on the ability of this protein to recognize sequence-specific differences in DNA structure and flexibility, this result indicates that the C-terminal domain is intimately involved in the recognition of sequence-dependent differences in DNA structure and flexibility.  相似文献   

16.
17.
The integrase family of site-specific recombinases catalyze a diverse array of DNA rearrangements in archaebacteria, eubacteria and yeast. The solution structure of the DNA binding domain of the integrase protein from the conjugative transposon Tn916 has been determined using NMR spectroscopy. The structure provides the first insights into distal site DNA binding by a site-specific integrase and reveals that the N-terminal domain is structurally similar to the double stranded RNA binding domain (dsRBD). The results of chemical shift mapping experiments suggest that the integrase protein interacts with DNA using residues located on the face of its three stranded beta-sheet. This surface differs from the proposed RNA binding surface in dsRBDs, suggesting that different surfaces on the same protein fold can be used to bind DNA and RNA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号