首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sorption potential of chemically and thermally treated rice husk (RHT) for the removal of 2,4-dichlorophenol (DCP) from aqueous solutions has been investigated. Sorption of DCP by rice husk was observed over a wide pH range of 1-10. The effect of contact time between liquid and solid phases, sorbent dose, pH, concentration of sorbate and temperature on the sorption of DCP onto rice husk has been studied. The pore area and average pore diameter of RHT by BET method are calculated to be 17+/-0.6 m2g-1 and 51.3+/-1.5 nm, respectively. Maximum sorption (98+/-1.2%) was achieved for RHT from 6.1x10(-5) moldm(-3) of sorbate solution using 0.1g of rice husk for 10 min agitation time at pH 6 and 303K, which is comparable to activated carbon commercial (ACC) 96.6+/-1.2%, but significantly higher than chemically treated rice husk (RHCT) 65+/-1.6% and rice husk untreated (RHUT) 41+/-2.3%. The sorption data obtained at optimized conditions was subjected to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. Sorption intensity 1/n (0.31+/-0.01) and sorption capacity multilayer C(m) (12.0+/-1.6 mmolg(-1)) have been evaluated using Freundlich sorption isotherm, whereas the values of sorption capacity monolayer Q (0.96+/-0.03 mmolg(-1)) and binding energy, b, (4.5+/-1.0)x10(4)dm(3)mol(-1) have been estimated by Langmuir isotherm. The Langmuir constant, b, was also used to calculate the dimensionless factor, R(L), in the concentration range (0.6-6.1)x10(-4) moldm(-3), suggesting greater sorption at low concentration. D-R sorption isotherm was employed to calculate sorption capacity X(m) (2.5+/-0.07 mmolg(-1)) and sorption energy E (14.7+/-0.13 kJmol(-1)). Lagergren and Morris-Weber equations were employed to study kinetics of sorption process using 0.2g of RHT, 25 cm(3) of 0.61x10(-4)moldm(-3) sorbate concentration at pH 6, giving values of first-order rate constant, k, and rate constant of intraparticle transport, R(id), (0.48+/-0.04 min(-1) and 6.8+/-0.8 nmolg(-1)min(-1/2), respectively) at 0.61x10(-4)moldm(-3) solution concentration of DCP, 0.1g RHT, pH 6 and 2-10min of agitation time. For thermodynamic studies, sorption potential was examined over temperature range 283-323 K by employing 6.1x10(-4)moldm(-3) solution concentration of DCP, 0.1g RHT at pH 6 and 10 min of agitation time and values of DeltaH (-25+/-1 kJmol(-1)), DeltaS (-61+/-4 Jmol(-1)K(-1)) and DeltaG(303K) (-7.1+/-0.09 kJmol(-1)) were computed. The negative values of enthalpy, entropy, and free energy suggest that the sorption is exothermic, stable, and spontaneous in nature.  相似文献   

2.
Moringa oleifera pods Lamarck (Drumstick or Horseradish) is a multipurpose medium or small size tree from sub-Himalayan regions of north-west India and indigenous to many parts of Asia, Africa, South America, and in the Pacific and Caribbean Islands. Its pods (MOP) have been employed as an inexpensive and effective sorbent for the removal of organics, i.e., benzene, toluene, ethylbenzene and cumene (BTEC) from aqueous solutions using HPLC method. Effect of different parameters, i.e., sorbent dose 0.05-0.8g, 25cm(-3) agitation time 5-120min, pH 1-10, temperature 283-308K and concentration of sorbate (1.3-13)x10(-3), (1.1-11)x10(-3), (0.9-9)x10(-3), (0.8-8)x10(-3)moldm(-3), on the sorption potential of MOP for BTEC have been investigated. The pore area and average pore diameter of the MOP by BET method using nitrogen as a standard are calculated to be 28.06+/-0.8m(2)g(-1) and 86.2+/-1.3nm respectively. Freundlich, Langumir and Dubinin-Radushkevich (D-R) sorption isotherms were employed to evaluate the sorption capacity of MOP. Sorption capacities of BTEC onto MOP have been found to be 46+/-10, 84+/-9, 101+/-4, 106+/-32mmolg(-1) by Freundlich, 8+/-0.1, 9+/-0.1, 10+/-0.3, 9+/-0.1mmolg(-1) by Langumir and 15+/-1, 21+/-1, 23+/-2, 22+/-3mmolg(-1) by D-R isotherms respectively, from BTEC solutions at 303K. While the mean energy of sorption process 9.6+/-0.3, 9.2+/-0.2, 9.3+/-0.3, 9.5+/-0.4kJmol(-1) for BTEC is calculated by D-R isotherm only. Rate constant of BTEC onto MOP 0.033+/-0.003, 0.030+/-0.002, 0.029+/-0.002, 0.027+/-0.002min(-1) at solution concentration of 1.3x10(-3), 1.1x10(-3), 0.9x10(-3) and 0.8x10(-3)moldm(-3) and at 303K have been calculated by employing Lagergren equation. Thermodynamic parameters DeltaH -8+/-0.4, -10+/-0.6, -11+/-0.7, -11+/-0.7kJmol(-1), DeltaS -22+/-2, -26+/-2, -27+/-2, -29+/-3Jmol(-1)K(-1) and DeltaG(303K) -0.9+/-0.2, -1.9+/-0.2, -2.3+/-0.1 and -2.6+/-0.2kJmol(-1) were also estimated for BTEC respectively at temperatures 283-308K. The negative values of DeltaH, DeltaS and DeltaG suggest exothermic, stable (with no structural changes at solid-liquid interface) and spontaneous nature of sorption process under optimized conditions. MOP has been used extensively to accrue and then to preconcentrate benzene, toluene and ethylbenzene in wastewater sample.  相似文献   

3.
Sorption of traces of Cd(II) ions onto beach sand is investigated as a function of nature and concentration of electrolyte (10(-4) to 10(-2)M nitric, hydrochloric and perchloric acids, pH 2-10 buffers and deionized water), shaking time 5-40min, shaking speed 50-200strokes/min, dosage of sand (50-1000mg/15cm(3)), concentration of sorbate (1.04x10(-6) to 1.9x10(-4)M) and temperature (293-323K). Maximum sorption of Cd(II) ions (approximately 66%) is achieved from deionized water using 300mg/15cm(3) sand in 20min. The data are successfully tested by Langmuir, Freundlich and Dubinin-Redushkevich (D-R) sorption isotherms. The values for characteristic Langmuir constants Q=13.31+/-0.20micromol/g and of b=(6.56+/-0.53)x10(3)dm(3)/mol, Freundlich constants A=2.23+/-1.16mmol/g and 1/n=0.70+/-0.05 of (D-R) constants beta=-0.005068+/-0.000328kJ(2)/mol(2), X(m)=46.91+/-11.91micromol/g and energy E=9.92+/-0.32kJ/mol have been estimated. Kinetics of sorption has been studied by applying Morris-Weber, Richenberg and Lagergren equations. The sorption follows first order rate equation resulting 0.182+/-0.004min(-1) The thermodynamic parameters DeltaH=32.09+/-2.92kJ/mol, DeltaS=111.0+/-9.5J/molK and DeltaG=-1.68+/-0.02kJ/mol are evaluated. The influence of common ions on the sorption of Cd(II) ions is also examined. Some common ions reduce the sorption while most of the ions have very little effect. It can be concluded that beach sand may be used as an alternative for the expensive synthetic sorbents.  相似文献   

4.
Biosorption of nickel from protonated rice bran   总被引:3,自引:0,他引:3  
In the present study biosorption technique, the accumulation of metals by biomass was used for the removal of nickel from aqueous medium. The rice bran in its acid treated (H(3)PO(4)) form was used as a low cost sorbent. The adsorption characteristics of nickel on protonated rice bran were evaluated as a function of pH, biosorbent size, biosorbent dosage, initial concentration of nickel and time. Within the tested pH range (pH 1-7), the protonated rice bran displayed more resistance to pH variation, retaining up to 102 mg/g of the nickel binding capacity at pH 6. Meanwhile, at lower pH values the uptake capacity decreased. The % age removal of nickel was maximum at 0.25 g of biosorbent dose and 0.25 mm biosorbent size. At the optimal conditions, metal ion uptake was increased as the initial metal ion concentration increased up to 100mg/L. Kinetic and isotherm experiments were carried out at the optimal pH 6.0 for nickel. The metal removal rate was rapid, with 57% of the total adsorption taking place within 15-30 min. The Freundlich and Langmuir models were used to describe the uptake of nickel on protonated rice bran. The Langmuir and Freundlich model parameters were evaluated. The equilibrium adsorption data was better fitted to Langmuir adsorption isotherm model. The adsorption followed pseudo second-order kinetic model. The thermodynamic assessment of the metal ion-rice bran biomass system indicated the feasibility and spontaneous nature of the process and DeltaG degrees values were evaluated as ranging from -22.82 to -24.04 kJ/mol for nickel sorption. The order of magnitude of the DeltaG degrees values indicated an ion-exchange physiochemical sorption process.  相似文献   

5.
Sorption of arsenic from aqueous solution was carried out using polyvinyl pyrrolidone K25 coated cassava peel carbon (PVPCC). Batch experiments were conducted to determine the effect of contact time, initial concentration, pH and desorption. Batch sorption data's were fitted to Lagergren kinetic studies. Column studies were also conducted using PVPCC as adsorbent. The optimized flow rate of 2.5 mL min(-1) and bed height 10 cm were used to determine the effect of metal ion concentration on removal of As(V). BDST model was applied to calculate the adsorption capacity (N(0)) of column. The N(0) value of 2.59 x 10(-5), 4.21 x 10(-5), 4.05 x 10(-5), 4.26 x 10(-5) and 3.2 x 10(-5) mg g(-1) were obtained for 0.5, 1.0, 1.5, 2.0 and 2.5 mg L(-1) of As(V), respectively. The batch sorption proved to be more efficient than the column sorption. The sorption of As(V) and the nature of the adsorbent was examined by Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies, respectively.  相似文献   

6.
Chiral second harmonic generation (C-SHG) has been used for the label-free detection of (R)-(+)-1,1'-bi-2-naphthol (RBN) and (S)-(+)-1,1'-bi-2-naphthol (SBN) binding to planar-supported lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine (POPC) based on the intrinsic chirality of the molecules. C-SHG adsorption isotherms of RBN and SBN reveal Langmuir adsorption behavior with binding constants of 2.7 +/- 0.2 x 10(5) M(-1) and 3.0 +/- 0.1 x 10(5) M(-1), respectively. The kinetics of RBN binding to a POPC bilayer was also measured. It was determined that the adsorption rate for RBN was 5.7 +/- 0.4 x 10(3) s(-1)M(-1) and the desorption rate was 2.1 +/- 0.8 x 10(-2) s(-1). From the kinetic data a binding constant of 2.7 +/- 1.0 x 10(5) M(-1) was calculated, which agrees well with the thermodynamic measurement. The C-SHG technique was correlated with surface tension measurements in order to determine the RBN surface excess within the POPC membrane. The maximum surface excess of RBN in a monolayer of POPC was 4.3 +/- 0.5 x 10(-11) mol cm2. Using the maximum surface excess in conjunction with the C-SHG binding data a lower limit of detection of 1.5 +/- 0.1 x 10(-13) mols cm(-2) was calculated. The results of these studies show that C-SHG is a powerful tool for the study of chiral molecular interactions at surfaces.  相似文献   

7.
The sorption of lead(II) ions on rice husk ash   总被引:1,自引:0,他引:1  
Present study deals with the adsorption of Pb(II) from aqueous solution on rice husk ash. Rice husk is a by-product generally obtained from rice mill. Rice husk ash is a solid obtained after burning of rice husk. Batch studies were performed to evaluate the influences of various experimental parameters like pH, initial concentration, adsorbent dosage, contact time and the effect of temperature. Optimum conditions for Pb(II) removal were found to be pH 5, adsorbent dosage 5 g/L of solution and equilibrium time 1h. Adsorption of Pb(II) followed pseudo-second-order kinetics. The effective diffusion coefficient is of the order of 10(-10)m(2)/s. The equilibrium adsorption isotherm was better described by Freuindlich adsorption isotherm model. The adsorption capacity (q(max)) of rice husk ash for Pb(II) ions in terms of monolayer adsorption was 91.74 mg/g. The change of entropy (DeltaS(0)) and enthalpy (Delta H(0)) were estimated at 0.132 kJ/(mol K) and 28.923 kJ/mol respectively. The negative value of Gibbs free energy (Delta G(0)) indicates feasible and spontaneous adsorption of Pb(II) on rice husk ash. The value of the adsorption energy (E), calculated using Dubinin-Radushkevich isotherm, was 9.901 kJ/mol and it indicated that the adsorption process was chemical in nature. Application study was also carried out to find the suitability of the process in waste water treatment operation.  相似文献   

8.
A nano filter showing the Knudsen flow was demonstrated by a modification of a membrane constructed from rice husk silica. The membrane was prepared by pressing and sintering micron sized rice husk silica with 4 nm pores. The membrane showed a permeability of 5.2 x 10(-8) mol m(-1) sec(-1) Pa(-1) for H2 and ratios of gas permeability 2.1 and 3.2 for k(H2)/k(CH4) and k(H2)/k(CO2), respectively. When the membrane was treated by filtration of approximately 100 nm sized rice husk silica particles, the permeability decreased to 4.9 x 10(-8) mol m(-1) sec(-1) Pa(-1) and the ratios increased to 2.2 and 3.4. In the case of the membrane after treatments with the dispersion and chemical deposition of tetraethylorthosilicate (TEOS), the corresponding permeability and ratios of the membrane were 1.8 x 10(-8) mol m(-1) sec(-1) Pa(-1), and 2.9 and 4.5, respectively. From the change of the ratio of gas permeability for the membrane with modifications, it is suggested that approximately 100 nm sized rice husk silica particles pack the large pores among the micron sized rice husk silica particles while the chemical deposition of tetraethylorthosilicate (TEOS) reveals the gas flow through 4 nm pores in the rice husk silica by blocking large pores.  相似文献   

9.
The sorption of Cr(VI) from aqueous solutions with macroporous resins which contain quarternary amine groups (Lewatit MP 64 and Lewatit MP 500) was studied at varying Cr(VI) concentration, adsorbent dose, pH, contact time and temperature. Batch shaking sorption experiments were carried out to evaluate the performance of Lewatit MP 64 and Lewatit MP 500 anion exchange resins in the removal of Cr(VI) from aqueous solutions. The concentration of Cr(VI) in aqueous solution was determined by UV-visible spectrophotometer. The ion exchange process, which is dependent on pH, showed maximum removal of Cr(VI) in the pH range 3-7 for an initial Cr(VI) concentration of 1x10(-3) M. The optimum pH for Cr(VI) adsorption was found as 5.0 for Lewatit MP 64 and 6.0 for Lewatit MP 500. The maximum Cr(VI) adsorption at pH 5.0 is 0.40 and 0.41 mmol/g resin for Lewatit MP 64 and Lewatit MP 500 anion exchangers, respectively. The maximum chromium sorption occurred at approximately 60 min for Lewatit MP 64 and 75 min for Lewatit MP 500. The suitability of the Freundlich and Langmuir adsorption models was also investigated for each chromium-sorbent system. The uptake of Cr(VI) by the anion exchange resins was reversible and so it has good potential for the removal of Cr(VI) from aqueous solutions. Both ion exchangers had high bonding constants but Lewatit MP 500 showed stronger binding. The rise in the temperature caused a slight decrease in the value of the equilibrium constant (K(c)) for the sorption of Cr(VI) ion.  相似文献   

10.
A new sorbent (raw rice bran) was investigated for heavy metal ions removal from aqueous solutions. Rice bran characterisation was carried out in order to identify the functional groups possibly involved in the metal binding. The binding process was studied in terms of binding capacity and metal affinity. The adsorption equilibrium was well described by the Freundlich isotherm model. The negative Gibbs free energy values obtained in this study with rice bran confirm the feasibility of the process and the spontaneous nature of sorption.  相似文献   

11.
The increase in the use of heavy metals has resulted in an increased flux of metallic substances into the aquatic environment which poses a danger to human health. The present work relates to the removal of cadmium ions by treatment with polyacrylamide grafted rice (Oryza sativa) husk/saguan (Tectona grandis) saw dust. The drinking water guideline value recommended by WHO for cadmium is 0.005 ppm.The adsorbent has been prepared by treatment of rice husk/saw dust with acrylamide. Removal has been studied at various pH values for different times of contact and adsorbate concentrations and is found to be pH-dependent, maximum removal occurs at pH 9 and at a contact time of 180 min for both the adsorbents. The results were found to be consistent with both the Langmuir and Freundlich isotherm models. The value of n (rate constant) determined at pH 9 has been found to be 1 (within experimental limits). This is further substantiated by applying the Lagergren model. The intra-particle diffusion constants were determined by the Morris-Weber model. Continuous flow column studies have also been undertaken and the breakthrough characteristics were determined. Desorption has been affected with 0.5M HCl. The results suggest that both polyacrylamide grafted rice husk/saw dust can be used as efficient and cost effective adsorbents for cadmium ion removal.  相似文献   

12.
A variety of low cost activated carbons were developed from agricultural waste materials viz., coconut shell, coconut shell fibers and rice husk. The low cost activated carbons were fully characterized and utilized for the remediation of various pollutants viz., chemical oxygen demand (COD), heavy metals, anions, etc., from industrial wastewater. Sorption studies were carried out at different temperatures and particle sizes to study the effect of temperatures and surface areas. The removal of chloride and fluoride increased with rise in temperature while COD and metal ions removal decreased with increase in temperature, thereby, indicating the processes to be endothermic and exothermic, respectively. The kinetics of COD adsorption was also carried out at different temperatures to establish the sorption mechanism and to determine various kinetic parameters. The COD removal was 47-72% by coconut shell fiber carbon (ATFAC), 50-74% by coconut shell carbon (ATSAC) and 45-73% by rice husk carbon (ATRHC). Furthermore, COD removal kinetics by rice husk carbon, coconut shell carbon and coconut fiber carbon at different temperatures was approximately represented by a first order rate law. Results of this fundamental study demonstrate the effectiveness and feasibility of low cost activated carbons. The parameters obtained in this study can be fully utilized to establish fixed bed reactors on large scale to treat the contaminated water.  相似文献   

13.
Theonyltrifluoroacetone (TTA) mixed with trioctyl phosphine oxide (TOPO) have been supported on Amberlite XAD-4, silica gel and wood powder. The resulting resins have been used to study the sorption of cobalt(II) from acetate buffer and their sorption capacities were determined and were found to be 12.38, 11.61 and 6.51 mg g(-1) for TTA+TOPO/Amberlite XAD4, TTA+TOPO/silica gel and TTA+TOPO/wood, respectively. The experimental results showed that the sorption of Co(II) increases with its initial concentration. The results can be fitted by Freundlich isotherm in the studied cobalt concentration range [10(-4)-10(-3) M] and 1/n values are 1.07, 1.17 and 1.73 for Amberlite XAD4, silica gel and wood powder, respectively. The sorption of Co(II) onto the prepared resins was found to follow the pseudo-second order model and the sorption rate have the values 8.79x10(-3), 10x10(-3) and 16x10(-3) g mg(-1)min(-1) for Amberlite XAD4, silica gel and wood powder, respectively. Thermodynamic parameters have also been calculated for the three systems and sorption process was found to be spontaneous and endothermic one.  相似文献   

14.
Sorption of malachite green on chitosan bead   总被引:2,自引:1,他引:1  
Chitosan bead was synthesized for the removal of a cationic dye malachite green (MG) from aqueous solution. The effects of temperature (303, 313 and 323 K), pH of the solution (2-11) on MG removal was investigated. Preliminary kinetic experiment was carried out up to 480 min. The sorption equilibrium was reached within 5 h (300 min). In order to determine the adsorption capacity, the sorption data were analyzed using linear form of Langmuir and Freundlich equation. Langmuir equation showed higher conformity than Freundlich equation. Ninety-nine percent removal of MG was reached at the optimum pH value of 8. From kinetic experiments, it was obtained that sorption process followed the pseudo-second-order kinetic model. This study showed that chitosan beads can be excellent adsorbents at high pH values. Activation energy value for sorption process was found to be 85.6 kJ mol(-1). This indicates that sorption process can be assumed as chemical process. Due to negative values of Gibbs free energy, sorption process can be considered as a spontaneous. In order to determine the interactions between MG and chitosan bead, FTIR analysis was also conducted.  相似文献   

15.
In this study, the ability of rice husk to adsorb methylene blue (MB) from aqueous solution was investigated in a fixed-bed column. The effects of important parameters, such as the value of initial pH, existed salt, the flow rate, the influent concentration of MB and bed depth, were studied. The Thomas model was applied to adsorption of MB at different flow rate, influent concentration and bed depth to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design using non-linear regression. The bed-depth/service time analysis (BDST) model was also applied at different bed depth to predict the breakthrough curves. The two models were found suitable for describing the biosorption process of the dynamic behavior of the rice husk column. All the results suggested that rice husk as adsorbent to removal MB from solution be efficient, and the rate of biosorption process be rapid. When the flow rate was 8.2ml min(-1) and the influent concentration of MB was 50mgl(-1), the equilibrium adsorption biomass reached 4.41mgg(-1) according to Thomas model.  相似文献   

16.
Removal of hexavalent chromium by xanthated chitosan was investigated in a packed bed up-flow column. The experiments were conducted to study the effect of important design parameters such as bed height and flow rate. At a bed height of 20 cm and flow rate of 5 mL min(-1), the metal-uptake capacity of xanthated chitosan and plain chitosan flakes for hexavalent chromium was found to be 202.5 and 130.12 mg g(-1) respectively. The bed depth service time (BDST) model was used to analyze the experimental data. The computed sorption capacity per unit bed volume (N(0)) was 4.6 ± 0.3 and 78.3 ± 2.9 g L(-1) for plain and xanthated flakes respectively at 10% breakthrough concentration. The rate constant (K(a)) was recorded as 0.0507 and 0.0194 L mg(-1)h(-1) for plain and xanthated chitosan respectively. In flow rate experiments, the results confirmed that the metal uptake capacity and the metal removal efficiency of plain and xanthated chitosan decreased with increasing flow rate. The Thomas model was used to fit the column sorption data at different flow rates and model constants were evaluated. The column was successfully applied for the removal of hexavalent chromium from electroplating wastewater. Five hundred bed volumes of electroplating wastewater were treated in column experiments using this adsorbent, reducing the concentrations of hexavalent chromium from 10 mg L(-1) to 0.1 mg L(-1).  相似文献   

17.
The SiO2 gate of an ion-sensitive field-effect transistor, (ISFET), is functionalized with a TiO2 film that includes imprinted molecular sites for 4-chlorophenoxy acetic acid, (1), or 2,4-dichlorophenoxy acetic acid, (2). The functionalized devices that include the imprinted interfaces reveal an impressive selectivity in the sensing of the imprinted substrates Na+ -1 or Na+ -2. The detection limit for Na+ -1 is (5+/-2) x 10(-4) M, which corresponds to 38 mV x dec(-1) in the concentration range of 0.5 to 6 mM. The detection limit for the analysis of Na+ -2 is (1.0+/-0.2) x 10(-5) M, which corresponds to 28 mV dec(-1) in the concentration range 0.1-9.0 mM. The equilibration time of the devices is ca. 5 min.  相似文献   

18.
Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater   总被引:1,自引:0,他引:1  
A high cost-effective treatment of sulphochromic waste is proposed employing a raw coconut coir as biosorbent for Cr(VI) removal. The ideal pH and sorption kinetic, sorption capacities, and sorption sites were the studied biosorbent parameters. After testing five different isotherm models with standard solutions, Redlich-Peterson and Toth best fitted the experimental data, obtaining a theoretical Cr(VI) sorption capacity (SC) of 6.3 mg g(-1). Acid-base potentiometric titration indicated around of 73% of sorption sites were from phenolic compounds, probably lignin. Differences between sorption sites in the coconut coir before and after Cr adsorption identified from Fourier transform infrared spectra suggested a modification of sorption sites after sulphochromic waste treatment, indicating that the sorption mechanism involves organic matter oxidation and chromium uptake. For sulphocromic waste treatment, the SC was improved to 26.8+/-0.2 mg g(-1), and no adsorbed Cr(VI) was reduced, remaining only Cr(III) in the final solution. The adsorbed material was calcinated to obtain Cr(2)O(3,) with a reduction of more than 60% of the original mass.  相似文献   

19.
Surface plasmon resonance (SPR) has been used in determining kinetics and thermodynamics of biological interaction in the past decades. One difficulty encountered in this technology is the need for a proper regeneration, which means the removal of analytes from the bound complexes to regenerate the activity of the ligands. Regeneration is not always practical since the harsh regeneration reagents may destroy the bioactivity of the ligands. It is even more difficult for complexes with high affinity constants. In this paper, we report a nonregeneration protocol for SPR techniques in which subsequent ligand/analyte interactions can be measured without regeneration; thus ligand biological activity could be retained. Kinetics, binding models, and mathematics of this protocol are discussed in detail using rabbit IgG as the analyte and engineered recombinant antibody A10B single-chain fragment variables (scFv) as the ligand. The affinity constant of rabbit IgG binding with A10B scFv measured by using a nonregeneration protocol was (2.5 +/- 0.2) x 10(7) M(-1), which was comparable with the value determined with a conventional regeneration SPR method ((2.2 +/- 1.5) x 10(7) M(-1)) and quartz crystal microbalance (1.9 x 10(7) M(-1)). A paradigm of streptavidin-biotin binding was analyzed to validate this protocol. The affinity constant for each binding subunit of streptavidin to the immobilized biotin was determined to be (7.3 +/- 0.2) x 10(6) M(-1), which was comparable with the solution-based value of 2 x 10(7) M(-1). The nonregeneration protocol requires a relatively high ligand density on the biosensor surface so that more data points can be obtained before surface saturation. The small size of scFv enables them to be constructed in the biosensors for such purpose.  相似文献   

20.
A quartz crystal microbalance (QCM) immunosensor was developed for the quantitative detection of glutathione-protected nanoclusters. Advantages intrinsic to QCM were employed to make it an attractive alternative to other immunosensing techniques. We have addressed challenges in the area of QCM mass sensing through experimental correlation between damping resistance and frequency change for a reliable mass measurement. Electrode functionalization was optimized with the use of protein A to immobilize and present polyclonal IgG for antigen binding. This method was developed for the detection of glutathione (antigen)-protected clusters of nanometer size with high surface area and thiolate valency. Quantitation of glutathione-nanocluster binding to immobilized polyclonal antibody provides equilibrium constants (K(a) = (3.6 +/- 0.2) x 10(5) M(-1)) and kinetic rate constants (k(f) = (5.4 +/- 0.7) x 10(1) M(-1) s(-1) and k(r) = (1.5 +/- 0.4) x10(-4) s(-1)) comparable to literature reports. These observations further imply that immunoreactive nanoparticles have potential in medical diagnostics and materials assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号