首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Advanced Robotics》2013,27(9):925-950
Considering that intelligent robotic systems work in a real environment, it is important that they themselves have the ability to determine their own internal conditions. Therefore, we consider it necessary to pay some attention to the diagnosis of such intelligent systems and to construct a system for the self-diagnosis of an autonomous mobile robot. Autonomous mobile systems must have a self-contained diagnostic system and therefore there are restrictions to building such a system on a mobile robot. In this paper, we describe an internal state sensory system and a method for diagnosing conditions in an autonomous mobile robot. The prototype of our internal sensory system consists of voltage sensors, current sensors and encoders. We show experimental results of the diagnosis using an omnidirectional mobile robot and the developed system. Also, we propose a method that is able to cope with the internal condition using internal sensory information. We focus on the functional units in a single robot system and also examine a method in which the faulty condition is categorized into three levels. The measures taken to cope with the faulty condition are set for each level to enable the robot to continue to execute the task. We show experimental results using an omnidirectional mobile robot with a self-diagnosis system and our proposed method.  相似文献   

2.
Preface     
《Advanced Robotics》2013,27(1):1-5
This paper discusses the problems in teleoperation systems for a mobile robot and the utilization of a virtual world in such systems. In order to achieve smooth operation of the mobile robot through a communication link, we should consider time delays in data transfer. To compensate for the incomplete data sets, the virtual images can be generated by computer graphics when the information on the working environment can be acquired beforehand. In this paper, we construct a teleoperation system with a virtual world. The performance of the system is examined through experiments with actual mobile robots which show that the virtual robot can be operated by an operator in almost the same manner as the teleoperated real robot. In an experimental environment with a second moving robot, we can keep the status of the second robot under perfect control and operate the first robot with no interference.  相似文献   

3.
The navigation of mobile robots is a vital aspect of technology in robotics. We applied the D++ algorithm, which is a novel and improved path-planning algorithm, to the navigation of mobile robots. The D++ algorithm combines Dijkstra??s algorithm with the idea of a sensor-based method, such that Dijkstra??s algorithm is adapted to local search, and the robot can determine its next move in real-time. Although the D++ algorithm frequently runs local search with limited ranges, it can compute optimum paths by expanding the size of the searching range to avoid local minima. In addition, we verified the performance of the D++ algorithm by applying it to a real robot in a number of environments. The use of the D++ algorithm enables robots to navigate efficiently in unknown, large, complex and dynamic environments.  相似文献   

4.
We present path-planning techniques for a multiple mobile robot system. The mobile robot has the shape of a cylinder, and its diameter, height, and weight are 8 cm, 15 cm, and 1.5 kg, respectively. The controller of the mobile robot is an MCS-51 chip, and it acquires detection signals from sensors through I/O pins. It receives commands from the supervising computer via a wireless RF interface, and transmits the status of the robots to the supervising computer via a wireless RF interface. The mobile robot system is a module-based system, and contains a controller module (including two DC motors and drivers), an obstacle detection module, a voice module, a wireless RF module, an encoder module, and a compass detection module. We propose an evaluation method to arrange the position of the multiple mobile robot system, and develop a path-planning interface on the supervising computer. In the experimental results, the mobile robots were able to receive commands from the supervising computer, and to move their next positions according to the proposed method.  相似文献   

5.
Evolution of homing navigation in a real mobile robot   总被引:6,自引:0,他引:6  
In this paper we describe the evolution of a discrete-time recurrent neural network to control a real mobile robot. In all our experiments the evolutionary procedure is carried out entirely on the physical robot without human intervention. We show that the autonomous development of a set of behaviors for locating a battery charger and periodically returning to it can be achieved by lifting constraints in the design of the robot/environment interactions that were employed in a preliminary experiment. The emergent homing behavior is based on the autonomous development of an internal neural topographic map (which is not pre-designed) that allows the robot to choose the appropriate trajectory as function of location and remaining energy.  相似文献   

6.
Recently, various robots with many degrees of freedom, such as rescue robots and domestic robots, have been developed and used in practical applications. It is difficult to control such robots autonomously in real environments, because in order to control the many degrees of freedom, we have to observe many states, calculate huge amounts of information, and operate many actuators. In this study, we consider a flexible robot without sensors or controllers that can determine the inclination of a slope and climb up the slope. In order to demonstrate the effectiveness of the proposed framework, we have developed a prototype robot and conducted experiments. The result indicates that the robot could determine the inclination and climb up a gentle slope autonomously. Thus, we have realized an autonomous robot that has no explicit sensors or controllers.  相似文献   

7.
The local path-planning algorithm using a human's heuristic and a laser range finder which has an excellent resolution with respect to angular and distance measurements is presented for real-time navigation of a free-ranging mobile robot. The algorithm utilizes the human's heuristic by which the shortest path from the various pathways to the goal can be found, even though the path may not have been taken before. In this paper, the attractive potentials in each candidate pathway are calculated in terms of the angle between the goal and pathway direction, the pathway width, and the angle between pathway and previous heading direction of the mobile robot. Consequently, the mobile robot chooses the optimal path that has the maximum attractive potential among candidate pathways. The heuristic principles are applied to the path decision of the mobile robot such as forward open way, side open way and no way. Also, the effectiveness of the established path-planning algorithm is examined by computer simulation and experiment in a complex environment.  相似文献   

8.
We propose a path-planning algorithm for an autonomous mobile robot using geographical information, under the condition that the robot moves in an unknown environment. Images input by a camera at every sampling time are analyzed and geographical elements are recognized, and the geographical information is embedded in an environmental map. Then the path is updated by integrating the known information and the prediction on the unknown environment. We used a sensor fusion method to improve the mobile robot's dead-reckoning accuracy. The experimental results confirm the effectiveness of the proposed algorithm as the robot reached the goal successfully using the geographical information.  相似文献   

9.
《Advanced Robotics》2013,27(13):1565-1582
Autonomous agents that act in the real world utilizing sensory input greatly rely on the ability to plan their actions and to transfer these skills across tasks. The majority of path-planning approaches for mobile robots, however, solve the current navigation problem from scratch, given the current and goal configuration of the robot. Consequently, these approaches yield highly efficient plans for the specific situation, but the computed policies typically do not transfer to other, similar tasks. In this paper, we propose to apply techniques from statistical relational learning to the path-planning problem. More precisely, we propose to learn relational decision trees as abstract navigation strategies from example paths. Relational abstraction has several interesting and important properties. First, it allows a mobile robot to imitate navigation behavior shown by users or by optimal policies. Second, it yields comprehensible models of behavior. Finally, a navigation policy learned in one environment naturally transfers to unknown environments. In several experiments with real robots and in simulated runs, we demonstrate that our approach yields efficient navigation plans. We show that our system is robust against observation noise and can outperform hand-crafted policies.  相似文献   

10.
基于增强转移网络(ATN)的室外移动机器人道路图像理解   总被引:2,自引:0,他引:2  
道路图像理解是室外移动机器人视觉导航自主驾驶研究中的一个关键技术 ,由于基于视觉导航的室外移动机器人自主驾驶时 ,对实时性和鲁棒性要求很高 ,因此 ,为了满足室外移动机器人自主驾驶的实时性和鲁棒性要求 ,将人工智能研究句法分析中的一个形式体系——增强转移网络 (ATN )成功地应用于室外移动机器人的道路理解中 ,进而提出了基于 ATN的室外移动机器人道路图像理解算法 ,该算法在统一的 ATN构建思想指导下 ,针对不同的道路情况 ,不仅可以灵活地构建出不同的道理理解 ATN网络 ,还可达到本质上的统一及应用上的灵活。经实验检验 ,该算法在满足系统要求的鲁棒性条件下 ,具有非常高的实时性 ,即能充分地满足自主移动机器人高速自主导航的需要  相似文献   

11.
Currently when path planning is used in SLAM it is to benefit SLAM only, with no mutual benefit for path planning. Furthermore, SLAM algorithms are generally implemented and modified for individual heterogeneous robotic platforms without autonomous means of sharing navigation information. This limits the ability for robot platforms to share navigation information and can require heterogeneous robot platforms to generate individual maps within the same environment. This paper introduces Learned Action SLAM, which for the first time autonomously combines path-planning with SLAM such that heterogeneous robots can share learnt knowledge through Learning Classifier Systems (LCS). This is in contrast to Active SLAM, where path-planning is used to benefit SLAM only. Results from testing LA-SLAM on robots in the real world have shown; promise for use on teams of robots with various sensor morphologies, implications for scaling to associated domains, and ability to share maps taken from less capable to more advanced robots.  相似文献   

12.
针对二维动态场景下的移动机器人路径规划问题,提出了一种新颖的路径规划方法——连续动态运动基元(continuous dynamic movement primitives, CDMPs).该方法将传统的单一动态运动基元推广到连续动态运动基元,通过对演示运动轨迹的学习,获得各运动基元的权重序列,利用相位变量的更新,实现对未知动态目标的追踪.该方法克服了移动机器人对环境模型的依赖,解决了动态场景下追踪运动目标和躲避动态障碍物的路径规划问题.最后通过一系列仿真实验,验证了算法的可行性.仿真实验结果表明,对于动态场景下移动机器人路径规划问题, CDMPs算法比传统的DMPs方法在连续性能和规划效率上具有更好的表现.  相似文献   

13.
14.
Recently, various autonomous mobile robots have been developed for practical use. To support the coexistence of robots and humans in real environments, we propose a concept named ‘Region with Velocity Constraints (RVC),’ which is set around hazardous areas. RVCs are regions where the velocities of the robot are constrained to predefined values. Inside the RVCs, the robot has to reduce its translational velocity to avoid predicted hazards such as collisions with obstacles, and to reduce its rotational velocity to prevent undesirable motions such as sharp turns. We also propose a motion planning method for navigating the mobile robot in an environment with RVCs based on the Navigation Function and Global Dynamic Window Approach. Our method generates a trajectory satisfying both translational and rotational velocity constraints to be compatible with the surroundings. Moreover, to demonstrate the validity of our method, we performed numerical simulations and experiments.  相似文献   

15.
In this paper, two intelligent techniques for a two‐wheeled differential mobile robot are designed and presented: A smart PID optimized neural networks based controller (SNNPIDC) and a PD fuzzy logic controller (PDFLC). Basically, mobile robots are required to work and navigate under exigent circumstances where the environment is hostile, full of disturbances such as holes and stones. The robot navigation leads to an autonomous decision making to overcome an obstacle and/or to stop the engine to protect it. In fact, the actuators that drive the robot should in no way be damaged and should stop to change direction in case of insurmountable disturbances. In this context, two controllers are implemented and a comparative study is carried out to demonstrate the effectiveness of the proposed approaches. For the first one, neural networks are used to optimize the parameters of a PID controller and for the second a fuzzy inference system type Mamdani based controller is adopted. The goal is to implement control algorithms for safe robot navigation while avoiding damage to the motors. In these two control cases, the smart robot has to quickly perform tasks and adapt to changing environment conditions while ensuring stability and accuracy and must be autonomous with regards to decision making. Simulations results aren't done in real environments, but are obtained with the Matlab/Simulink environment in which holes and stones are modeled by different load torques and are applied as disturbances on the mobile robot environment. These simulation results and the robot performances are satisfactory and are compared to a PID controller in which parameters are tuned by the Ziegler–Nichols tuning method. The applied methods have proven to be highly robust.  相似文献   

16.
There is huge diversity among navigation and path-planning problems in the real world because of the enormous number and great variety of assumptions about the environments, constraints, and tasks imposed on a robot. To deal with this diversity, we propose a new solution to the path-planning and navigation of a mobile robot. In our approach, we formulated the following two problems at each time-step as discrete optimization problems: (1) estimation of a robot's location, and (2) action decision. For the first problem, we minimize an objective function that includes a data term, a constraint term, and a prediction term. This approach is an approximation of Markov localization. For the second problem, we define and minimize another objective function that includes a goal term, a smoothness term, and a collision term. Simulation results show the effectiveness of our approach. This work was presented in part at the Fifth International Symposium on Artificial Life and Robotics, Oita, Japan, January 26–28, 2000  相似文献   

17.
Completely autonomous performance of a mobile robot within noncontrolled and dynamic environments is not possible yet due to different reasons including environment uncertainty, sensor/software robustness, limited robotic abilities, etc. But in assistant applications in which a human is always present, she/he can make up for the lack of robot autonomy by helping it when needed. In this paper, the authors propose human–robot integration as a mechanism to augment/improve the robot autonomy in daily scenarios. Through the human–robot-integration concept, the authors take a further step in the typical human–robot relation, since they consider her/him as a constituent part of the human–robot system, which takes full advantage of the sum of their abilities. In order to materialize this human integration into the system, they present a control architecture, called architecture for human–robot integration, which enables her/him from a high decisional level, i.e., deliberating a plan, to a physical low level, i.e., opening a door. The presented control architecture has been implemented to test the human–robot integration on a real robotic application. In particular, several real experiences have been conducted on a robotic wheelchair aimed to provide mobility to elderly people.  相似文献   

18.
Being able to navigate accurately is one of the fundamental capabilities of a mobile robot to effectively execute a variety of tasks including docking, transportation, and manipulation. As real-world environments often contain changing or ambiguous areas, existing features can be insufficient for mobile robots to establish a robust navigation behavior. A popular approach to overcome this problem and to achieve accurate localization is to use artificial landmarks. In this paper, we consider the problem of optimally placing such artificial landmarks for mobile robots that repeatedly have to carry out certain navigation tasks. Our method aims at finding the minimum number of landmarks for which a bound on the maximum deviation of the robot from its desired trajectory can be guaranteed with high confidence. The proposed approach incrementally places landmarks utilizing linearized versions of the system dynamics of the robot, thus allowing for an efficient computation of the deviation guarantee. We evaluate our approach in extensive experiments carried out both in simulations and with real robots. The experiments demonstrate that our method outperforms other approaches and is suitable for long-term operation of mobile robots.  相似文献   

19.
In recent years, mobile robots have been required to become more and more autonomous in such a way that they are able to sense and recognize the three‐dimensional space in which they live or work. In this paper, we deal with such an environment map building problem from three‐dimensional sensing data for mobile robot navigation. In particular, the problem to be dealt with is how to extract and model obstacles which are not represented on the map but exist in the real environment, so that the map can be newly updated using the modeled obstacle information. To achieve this, we propose a three‐dimensional map building method, which is based on a self‐organizing neural network technique called “growing neural gas network.” Using the obstacle data acquired from the 3D data acquisition process of an active laser range finder, learning of the neural network is performed to generate a graphical structure that reflects the topology of the input space. For evaluation of the proposed method, a series of simulations and experiments are performed to build 3D maps of some given environments surrounding the robot. The usefulness and robustness of the proposed method are investigated and discussed in detail. © 2004 Wiley Periodicals, Inc.  相似文献   

20.
《Advanced Robotics》2013,27(5):385-388
Our research objective is to realize sensor-based navigation for car-like mobile robots. We adopt the generalized Voronoi graph (GVG) for the robot's local path and a map representation. It has the advantage to describe the mobile robot's path for sensor-based navigation from the point of view of completeness and safety. However, it is impossible to apply the path to car-like mobile robots directly, because the limitation of the minimum turning radius for a car-like robot may prevent it from following the GVG exactly. To solve this problem, we propose a local smooth path-planning algorithm for car-like mobile robots. Basically, an initial local path is generated by a conventional path-planning algorithm using GVG theory and it is modified smoothly by a Bezier curve to enable the car-like robots to follow it by maximizing our evaluation function. In this paper, we introduce a local smooth path-planning algorithm based on the GVG and explain the details of our evaluation function. Simulation and experimental results support the validity of the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号