首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
聚乙烯醇缩丁醛/SiO2纳米复合材料的研究   总被引:5,自引:1,他引:4       下载免费PDF全文
采用共混法在聚乙烯醇缩丁醛材料中引入纳米SiO2粒子制备了均匀的PVB/SiO2复合材料。以UV-VIS,FT-IR,XRD,SEM等现代测试手段表征了材料的微观形貌、结构和光学性能。结果表明:由于纳米SiO2粒子的引入,使PVB/SiO2复合材料具有良好的紫外线屏蔽性能。同时,材料的韧性得到明显提高,其断裂伸长率为纯PVB材料的8倍。该材料的制备方法简便易行,具有一定的工业应用前景。  相似文献   

2.
聚乙烯醇缩丁醛/纳米TiO2原位法复合材料的合成与性能   总被引:1,自引:0,他引:1  
主要研究了BA/PVA、纳米TiO2和催化剂及表面活性剂的用量、反应温度和时间等因素对原位复合材料膜性能的影响;采用原子力显微镜( AFM)对所制备的原位复合材料的结构、微观形貌进行了分析.结果表明,在PVB树脂合成阶段中引入纳米TiO2粒子,制得的原位复合材料的力学性能尤其韧性得到了明显提高.在TiO2相对PVB含量...  相似文献   

3.
利用超声波将经表面预处理的纳米氧化锡锑(ATO)粒子均匀分散到聚乙烯醇(PVA)水溶液中,与正丁醛缩合反应,原位法制备了一系列纳米ATO/聚乙烯醇缩丁醛(PVB)复合材料。采用FTIR、UV/VIS/NIR、TG、TEM及AFM等对所制备的原位纳米ATO/PVB复合材料的结构、微观形貌及性能进行了研究。结果表明: 在合成PVB树脂的阶段添加少量纳米ATO粒子,能更均匀地分散在PVB基质中,所制备的复合材料薄膜的紫外线及近红外光透过率大幅度下降,而可见光透过率降低幅度较小,且随纳米ATO用量增加,紫外屏蔽及隔热性能不断提高。在纳米ATO用量(与PVB质量比为2.76%)较低时,纳米ATO/PVB复合材料的力学性能尤其韧性得到明显提高,断裂伸长率达到纯PVB的7.3倍; 在ATO与PVB质量比为1.74%时,可见光透过率高于70%,紫外光透过率低于10%,近红外光热辐射透过率低于28%,导热系数为0.23 W(m·K)-1,与纯PVB相比,用纳米ATO/PVB复合材料胶膜所制盖板的隔热空腔内温度下降5.5℃,具有良好的透明度、紫外屏蔽及隔热性能。  相似文献   

4.
综述了制备纳米金属/TiO2复合材料的方法,主要包括溶胶-凝胶法、脉冲电沉积法、离子注入法、光沉积法等,分析了这些方法的制备原理、优缺点及金属对TiO2性能的影响,阐述了纳米金属/TiO2复合材料在催化剂、气敏传感器、光裂解水、锂离子电池等方面的应用研究,并对今后金属/TiO2复合材料的研究方向提出了一些建议.  相似文献   

5.
采用溶胶-凝胶法以钛酸四丁酯为水解前驱体、盐酸为催化剂、冰乙酸为催化剂合成出纳米TiO2溶胶,利用偶联剂KH570对纳米TiO2溶胶进行表面接枝改性,将经过表面接枝改性的纳米TiO2溶胶真空脱溶剂后与硅树脂预聚体进行原位复合,制备出透明的有机-无机杂化硅树脂复合材料。对溶胶-凝胶法制备纳米TiO2/加成型硅树脂杂化复合材料的合成机理进行了研究与探讨,通过测试硅树脂杂化复合材料的黄色指数、透光率和折射率考察了不同形态、不同含量纳米TiO2对硅树脂抗紫外老化及光学性能的影响。结果发现:当纳米TiO2凝胶的质量分数为5%时硅树脂杂化复合材料在可见光区的透光率达到99%,折射率达到最大值1.53,并且具有良好的耐紫外老化性能。  相似文献   

6.
利用溶液共混法制备了PET/TiO2纳米复合材料并用SEM进行表征,自行设计、加工了用于表征该复合材料吸氧性能的测试系统,并通过实验确定了进行吸氧性能测试的具体实验方法.通过对紫外照射下该体系的吸氧性能测试得到了一定TiO2含量下TiO2与三乙醇胺(TEOA)的最佳配比,并且用红外光谱分析了PET/TiO2体系的吸氧特性.结果表明:PET/TiO2共混体系确实具备吸收氧气的性质;控制PET与TiO2质量比为4:1,TiO2与TEOA质量比5:1时体系吸氧性能最佳,紫外照射8次后平均吸氧量为2.22mL/g.  相似文献   

7.
利用溶液共混法制备了PET/TiO2纳米复合材料并用SEM进行表征,自行设计、加工了用于表征该复合材料吸氧性能的测试系统,并通过实验确定了进行吸氧性能测试的具体实验方法.通过对紫外照射下该体系的吸氧性能测试得到了一定TiO2含量下TiO2与三乙醇胺(TEOA)的最佳配比,并且用红外光谱分析了PET/TiO2体系的吸氧特性.结果表明:PET/TiO2共混体系确实具备吸收氧气的性质;控制PET与TiO2质量比为4:1,TiO2与TEOA质量比5:1时体系吸氧性能最佳,紫外照射8次后平均吸氧量为2.22mL/g.  相似文献   

8.
通过无皂-原位乳液聚合法,以甲基丙烯酸甲酯、丙烯酸丁酯为原料,采用反应性乳化剂1-烯丙氧基-3-(4-壬基苯酚)-2-丙醇聚氧乙烯醚硫酸铵(DNS-86)制备聚丙烯酸酯/纳米TiO2复合材料。采用红外光谱(FT-IR)、动态激光光散射(DLS)、透射电镜(TEM)等检测手段对复合材料的结构进行了表征,通过力学性能、耐水性测试研究了纳米TiO2对复合材料性能的影响。FT-IR测试结果表明纳米TiO2与聚合物发生了相互作用,有少量的TiO2被接枝到聚合物分子中。DLS测试结果表明与纯聚丙烯酸酯相比,聚丙烯酸酯/纳米TiO2复合乳液乳胶粒的平均粒径和粒径分布都有所降低。TEM测试结果表明纳米TiO2分布在聚合物基体中。复合材料的性能测试结果表明,当纳米TiO2的加入量为0.5%时,聚丙烯酸酯/纳米TiO2复合材料的综合力学性能较好;纳米TiO2的加入可提高复合材料的耐水性。  相似文献   

9.
用硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH550)对纳米TiO2进行改性,将不同比例的聚乙烯醇(17-88与17-99)相混合制成胶液,再采用直接共混法制备了纳米TiO2/聚乙烯醇(PVA)复合材料,并流延成膜。通过自制透水仪、扫描电镜、热失重分析、拉伸强度、耐水性能以及透明性对纳米TiO2/PVA复合膜进行表征,探讨不同含量的PVA 17-88对复合膜的性能影响。结果表明,PVA 17-88的质量分数为30%,纳米TiO2/PVA膜厚度控制在25~30μm,透水量较大,拉伸强度达到28.72MPa,耐水性能最佳。  相似文献   

10.
TiO2纳米材料因其存在高的光生电子-空穴对复合速率、电子迁移率低、导电性差以及可逆容量低等问题,使其在光催化和电化学等领域的应用受到限制.MXene(Mn+1 Xn Tx)作为一种新型的二维过渡金属碳化物、氮化物或碳氮化物,具有独特的二维层状结构、良好的金属导电性和较高的载流子迁移率等特性,将其引入TiO2纳米材料中构建TiO2/MXene纳米复合材料,利用两者的协同作用可进一步提高光电性能.本文从TiO2纳米材料的角度出发,系统综述了零维、一维和二维TiO2与MXene纳米复合材料的可控制备、结构性能及在光催化和电化学领域应用的最新研究进展,并着重介绍了纳米复合材料的构筑机理及MXene对提高TiO2的光催化和电化学性能的增强机制等,分析了目前TiO2/MXene复合材料的制备及其在光催化和电化学领域应用中存在的不足.此外,从优化制备工艺、提升性能和探索相应的性能增强机制等方面对未来TiO2/MXene复合材料的研究方向进行了展望.  相似文献   

11.
采用静电喷雾技术制备了以氟橡胶(F2604)、聚乙烯醇缩丁醛(PVB)及三硝基甲苯(TNT)为包覆材料的黑索今(RDX)基复合颗粒,对所制备的复合颗粒进行扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和差示扫描量热仪(DSC)分析,得到超细包覆粒子的包覆效果及其热分解特性。结果表明:F2604/RDX与PVB/RDX复合颗粒为形貌规整、粒径均一的球形颗粒,而TNT/RDX复合颗粒为不规则多面体;F2604/RDX、PVB/RDX与TNT/RDX复合颗粒的红外吸收峰和X射线衍射峰位置与RDX一致;PVB/RDX复合物活化能最低,为137.059 k J/mol。  相似文献   

12.
A surface-draw method to fabricate recyclable carbon nanotube/polyvinyl butyral (CNT/PVB) composite fibers is reported. This method is effective for both single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube. The CNT mass content of CNT/PVB composite fibers can vary from 0 to 80 wt.%, which is higher than most CNT/polymer composites reported to date. The diameter of the composite fibers can be controlled in the range of 10-100 μm, with essentially unlimited draw length. The composite fibers with 7.4 wt.% SWCNTs showed optimal tensile properties. Compared with pure PVB fibers, the tensile strength, failure strain, and elastic modulus of the composite fiber have improved about 127%, 27%, and 73%, respectively. In addition, SWCNT/PVB composites with 66.7 wt.% SWCNTs have the highest conductivity of 42.9 S m−1. More importantly, the major benefit is the “greenness” of the method, which involves environment friendly ethanol-water solvent with no functionalization of the nanotube required, and only simple apparatus are needed. The CNT/PVB composite fibers obtained can be dissolved in ethanol solution and reformed with the surface draw method without any additional treatment; and the material properties after recycle is comparable to those fabricated in the first round.  相似文献   

13.
采用一步法制备出EVA/纳米T iO2及EVA/纳米S iO2复合材料,研究纳米微粒在EVA基体中的分散性、结构变化及对力学性能、流变性能的影响。结果表明,加入的纳米微粒粒径越小,纳米粉体在基体中的分散就会更加均匀,分散微粒的粒径也会更小;纳米微粒和硅烷偶联剂之间,硅烷偶联剂和EVA之间会形成一定的键合结构。适量的纳米微粒能够改变断裂机理,有效地提高材料的力学性能,降低熔体的表观黏度,从而改善加工流动性。  相似文献   

14.
在理论分析的基础上对纳米TiO2分别进行掺CdS和掺银改性实验研究。采用XRD和粒度分析技术对改性后的样品进行表征,并以掺杂CdS、Ag+纳米TiO2进行光催化降解甲基橙模拟实验。结果表明,掺杂CdS、Ag+纳米TiO2在可见光范围内降解有机物的效率有较大提高。  相似文献   

15.
主要研究了纳米TiO2的加入对内墙涂料性能的影响。结果表明,加入2%纳米TiO2能极大地提高涂料降解甲醛的能力,但加入4%纳米TiO2反而使涂料的性能变差。涂料的常规性能研究也表明,加入少于2%的纳米TiO2对涂料的常规性能会有极大的提高。  相似文献   

16.
采用静电纺丝法以聚乙烯吡咯烷酮(PVP)和纳米T iO2为原料制备了一种新型纳米/亚微米纤维态催化剂。采用SEM、TEM、XRD、FT-IR对所制得的新型纳米/亚微米纤维态催化剂进行了表征,结果表明纤维直径随着纳米T iO2含量的增加而增加,纳米T iO2颗粒在PVP纤维基体中分散均匀,并且纳米T iO2颗粒和PVP分子形成了氢键。光催化性能测试结果表明纤维中纳米T iO2含量为20%时,紫外光照射80 m in对甲醛的光催化降解率达到了56.8%。  相似文献   

17.
二氧化钛/磷灰石纳米抗菌复合材料的研究   总被引:7,自引:0,他引:7  
黎霞  魏杰  李玉宝 《功能材料》2004,35(1):119-121
为减少生物材料为中心的细菌感染,采用溶胶-凝胶法原位制备了纳米二氧化钛/磷灰石复合材料。对复合材料形貌和组成结构进行了分析,并用复合材料进行了抗菌实验。结果表明二氧化钛与磷灰石在纳米水平上形成了复合材料,其抗菌效果明显。此类具有抗菌性能的纳米复合材料可用于制备多种新型抗菌生物材料。  相似文献   

18.
李志林  刘建军  关海鹰 《材料保护》2006,39(7):20-22,25
用电镀的方法制备出Ni-纳米TiO2复合电镀层,讨论了表面活性剂、阴极电流密度、搅拌速率等对复合镀层硬度的影响并分析了纳米TiO2的加入对复合镀层硬度、耐蚀性的影响情况.结果表明,与纯镍镀层相比,Ni-纳米TiO2复合电镀层的硬度可提高90~190 HV;添加阳离子表面活性剂分散纳米TiO2所得复合镀层硬度最高,说明阳离子表面活性剂有利于纳米TiO2-Ni复合电沉积.浸泡试验表明,在硝酸溶液中复合镀层的腐蚀速率高于纯镍镀层的腐蚀速率,但远低于未镀覆钢板的腐蚀速率;极化曲线表明,与纯镍镀层相比,复合镀层的自腐蚀电位没有显著提高.说明在复合镀层中添加纳米TiO2不能改善其耐蚀性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号