首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We have analysed the YJR043c gene of Saccharomyces cerevisiae, previously identified by systematic sequencing. The deletion mutant (yjr043cdelta) shows slow growth at low temperature (15 degrees C), while at 30 degrees C and 37 degrees C the growth rate of mutant cells is only moderately affected. At permissive and nonpermissive temperatures, mutant cells were larger and showed a high proportion of large-budded cells with a single duplicated nucleus at or beyond the bud neck and a short spindle. This phenotype was even more striking at low temperature, the mutant cells becoming dumbbell shaped. All these phenotypes suggest a role for YJR043C in cell cycle progression in G2/M phase. In two-hybrid assays, the YJR043c gene product specifically interacted with Pol1, the catalytic subunit of DNA polymerase alpha. The pol1-1 /yjr043cdelta double mutant showed a more severe growth defect than the pol1-1 single mutant at permissive temperature. Centromeric plasmid loss rate elevated in yjr043cdelta. Analysis of the sequence upstream of the YJR043c ORF revealed the presence of an MluI motif (ACGCGT), a sequence associated with many genes involved in DNA replication in budding yeast. The cell cycle phenotype of the yjr043cdelta mutant, the evidence for genetic interaction with Pol1, the presence of an MluI motif upstream and the elevated rate of CEN plasmid loss in mutants all support a function for YJR043C in DNA replication.  相似文献   

2.
3.
cdc1+ is required for cell cycle progression in Schizosaccharomyces pombe. Cells carrying temperature-sensitive cdc1 mutants undergo cell cycle arrest when shifted to the restrictive temperature, becoming highly elongated. Here we describe the cloning and sequencing of cdc1+, which is shown to encode a 462 residue protein that displays significant sequence similarity to the small subunit of mammalian DNA polymerase delta. cdc1+ interacts genetically with pol3+, which encodes the large subunit of DNA polymerase delta in fission yeast, and the Cdc1 protein binds to Pol3 in vitro, strongly suggesting that Cdc1 is likely to be the small subunit of Pol delta. In addition, we show that cdc1+ overexpression is sufficient to rescue cells carrying temperature-sensitive cdc27 alleles and that the Cdc1 and Cdc27 proteins interact in vivo and in vitro. Deletion of either cdc1+ or cdc27+ results in cell cycle arrest with the arrested cells having a single nucleus with 2C DNA content. No evidence was obtained for a cut phenotype, indicating that neither cdc1+ nor cdc27+ is required for checkpoint function. cdc1 mutant cells are supersensitive to the DNA synthesis inhibitor hydroxyurea and to the DNA damaging agent MMS, display increased frequency of mini-chromosome loss and have an extended S phase.  相似文献   

4.
5.
We previously isolated 25 temperature-sensitive gsp1 alleles of Saccharomyces cerevisiae Ran homologue, each of which possesses amino acid changes that differ from each other. We report here isolation of three multicopy suppressors-PDE2, NTF2, and a gene designated MOG1-all of which rescued a growth defect of these gsp1 strains. The gsp1 suppression occurred even in the absence of GSP2, another S. cerevisiae GSP1-like gene. Previously, NTF2 was reported to suppress gsp1 but not PDE2. Mog1p, with a calculated molecular mass of 24 kDa, was found to be encoded by the yeast ORF YJR074W. Both MOG1 and NTF2 suppressed a series of gsp1 alleles with similar efficiency, and both suppressed gsp1 even with a single gene dose. Consistent with the high efficiency of gsp1 suppression, Mog1p directly bound to GTP, but not to GDP-Gsp1p. The disruption of MOG1 made yeast temperature-sensitive for growth. Deltamog1, which was suppressed by overexpression of NTF2, was found to have a defect in both classic and nonclassic nuclear localization signal-dependent nuclear-protein imports, but not in mRNA export. Thus, Mog1p, which was localized in the nucleus, is a Gsp1p-binding protein involved in nuclear-protein import and that functionally interacts with Ntf2p. Furthermore, the finding that PDE2 suppressed both gsp1 and rna1-1 indicates that the Ran GTPase cycle is regulated by the Ras-cAMP pathway.  相似文献   

6.
The essential CDC14 gene of the budding yeast, Saccharomyces cerevisiae, encodes a 62-kDa protein containing a sequence that conforms to the active site motif found in all enzymes of the protein tyrosine phosphatase superfamily. Genetic studies suggest that Cdc14p may be involved in the initiation of DNA replication, but its precise cell cycle function is unknown. Recombinant Cdc14p was produced in bacteria, characterized, and shown to be a dual specificity protein phosphatase. Polyanions such as polyglutamate and double-stranded and single-stranded DNA bind to Cdc14p and affect its activity. Native molecular weights of 131,000 and 169,000 determined by two independent methods indicate that recombinant Cdc14p self-associates in vitro to form active oligomers. The catalytically inactive Cdc14p C283S/R289A mutant is not able to suppress the temperature sensitivity of a cdc14-1(ts) mutant nor replace the wild type gene in vivo, demonstrating that phosphatase activity is required for the cell cycle function of Cdc14p. A distinctive COOH-terminal segment (residues 375-551) is rich in Asn and Ser residues, carries a net positive charge, and contains two tandem 21-residue repeats. This COOH-terminal segment is not required for activity, for oligomerization, or for the critical cell cycle function of Cdc14p.  相似文献   

7.
Cyclophilins are cis-trans-peptidyl-prolyl isomerases that bind to and are inhibited by the immunosuppressant cyclosporin A (CsA). The toxic effects of CsA are mediated by the 18-kDa cyclophilin A protein. A larger cyclophilin of 40 kDa, cyclophilin 40, is a component of Hsp90-steroid receptor complexes and contains two domains, an amino-terminal prolyl isomerase domain and a carboxy-terminal tetratricopeptide repeat (TPR) domain. There are two cyclophilin 40 homologs in the yeast Saccharomyces cerevisiae, encoded by the CPR6 and CPR7 genes. Yeast strains lacking the Cpr7 enzyme are viable but exhibit a slow-growth phenotype. In addition, we show here that cpr7 mutant strains are hypersensitive to the Hsp90 inhibitor geldanamycin. When overexpressed, the TPR domain of Cpr7 alone complements both cpr7 mutant phenotypes, while overexpression of the cyclophilin domain of Cpr7, full-length Cpr6, or human cyclophilin 40 does not. The open reading frame YBR155w, which has moderate identity to the yeast p60 homolog STI1, was isolated as a high-copy-number suppressor of the cpr7 slow-growth phenotype. We show that this Sti1 homolog Cns1 (cyclophilin seven suppressor) is constitutively expressed, essential, and found in protein complexes with both yeast Hsp90 and Cpr7 but not with Cpr6. Cyclosporin A inhibited Cpr7 interactions with Cns1 but not with Hsp90. In summary, our findings identify a novel component of the Hsp90 chaperone complex that shares function with cyclophilin 40 and provide evidence that there are functional differences between two conserved sets of Hsp90 binding proteins in yeast.  相似文献   

8.
The gene for an essential protein subunit of nuclear RNase P from Saccharomyces cerevisiae has been cloned. The gene for this protein, RPP1, was identified by virtue of its homology with a human scleroderma autoimmune antigen, Rpp30, which copurifies with human RNase P. Epitope-tagged Rpp1 can be found in association with both RNase P RNA and a related endoribonuclease, RNase MRP RNA, in immunoprecipitates from crude extracts of cells. Depletion of Rpp1 in vivo leads to the accumulation of precursor tRNAs with unprocessed 5' and 3' termini and reveals rRNA processing defects that have not been described previously for proteins associated with RNase P or RNase MRP. Immunoprecipitated complexes cleave both yeast precursor tRNAs and precursor rRNAs.  相似文献   

9.
The hus1+ gene is one of six fission yeast genes, termed the checkpoint rad genes, which are essential for both the S-M and DNA damage checkpoints. Classical genetics suggests that these genes are required for activation of the PI-3 kinase-related (PIK-R) protein, Rad3p. Using a dominant negative allele of hus1+, we have demonstrated a genetic interaction between hus1+ and another checkpoint rad gene, rad1+. Hus1p and Rad1p form a stable complex in wild-type fission yeast, and the formation of this complex is dependent on a third checkpoint rad gene, rad9+, suggesting that these three proteins may exist in a discrete complex in the absence of checkpoint activation. Hus1p is phosphorylated in response to DNA damage, and this requires rad3+ and each of the other checkpoint rad genes. Although there is no gene related to hus1+ in the Saccharomyces cerevisiae genome, we have identified closely related mouse and human genes, suggesting that aspects of the checkpoint control mechanism are conserved between fission yeast and higher eukaryotes.  相似文献   

10.
Rapamycin is an immunosuppressant that effectively controls various immune responses; however, its action in the signal transduction of lymphocytes has remained largely unknown. We show here that a phosphoprotein encoded by mouse alpha4 (malpha4) gene transmitting a signal through B-cell antigen receptor (BCR) is associated with the catalytic subunit of protein phosphatase 2A (PP2Ac). The middle region of alph4, consisting of 109 amino acids (94-202), associates directly with PP2Ac, irrespective of any other accessory molecule. Rapamycin treatment disrupts the association of PP2Ac/alpha4 in parallel with the inhibitory effect of lymphoid cell proliferation. The effect of rapamycin was inhibited with an excess amount of FK506 that potentially completes the binding to FKBP. Rapamycin treatment also suppresses the phosphatase activity of cells measured by in vitro phosphatase assay. Introduction of the malpha4 cDNA into Jurkat cells or the increased association of PP2Ac/alpha4 by the culture with low serum concentration confers cells with rapamycin resistance. Moreover, glutathione S-transferase (GST)-alpha4 augments the PP2A activity upon myelin basic protein (MBP) and histone in the in vitro assay. These results suggest that alpha4 acts as a positive regulator of PP2A and as a new target of rapamycin in the activation of lymphocytes.  相似文献   

11.
Sst2 is the prototype for the newly recognized RGS (for regulators of G-protein signaling) family. Cells lacking the pheromone-inducible SST2 gene product fail to resume growth after exposure to pheromone. Conversely, overproduction of Sst2 markedly enhanced the rate of recovery from pheromone-induced arrest in the long-term halo bioassay and detectably dampened signaling in a short-term assay of pheromone response (phosphorylation of Ste4, Gbeta subunit). When the GPA1 gene product (Galpha subunit) is absent, the pheromone response pathway is constitutively active and, consequently, growth ceases. Despite sustained induction of Sst2 (observed with specific anti-Sst2 antibodies), gpa1delta mutants remain growth arrested, indicating that the action of Sst2 requires the presence of Gpa1. The N-terminal domain (residues 3 to 307) of Sst2 (698 residues) has sequence similarity to the catalytic regions of bovine GTPase-activating protein and human neurofibromatosis tumor suppressor protein; segments in the C-terminal domain of Sst2 (between residues 417 and 685) are homologous to other RGS proteins. Both the N- and C-terminal domains were required for Sst2 function in vivo. Consistent with a role for Sst2 in binding to and affecting the activity of Gpa1, the majority of Sst2 was membrane associated and colocalized with Gpa1 at the plasma membrane, as judged by sucrose density gradient fractionation. Moreover, from cell extracts, Sst2 could be isolated in a complex with Gpa1 (expressed as a glutathione S-transferase fusion); this association withstood the detergent and salt conditions required for extraction of these proteins from cell membranes. Also, SST2+ cells expressing a GTPase-defective GPA1 mutant displayed an increased sensitivity to pheromone, whereas sst2 cells did not. These results demonstrate that Sst2 and Gpa1 interact physically and suggest that Sst2 is a direct negative regulator of Gpa1.  相似文献   

12.
Checkpoints prevent DNA replication or nuclear division when chromosomes are damaged. The Saccharomyces cerevisiae DDC1 gene belongs to the RAD17, MEC3 and RAD24 epistasis group which, together with RAD9, is proposed to act at the beginning of the DNA damage checkpoint pathway. Ddc1p is periodically phosphorylated during unperturbed cell cycle and hyperphosphorylated in response to DNA damage. We demonstrate that Ddc1p interacts physically in vivo with Mec3p, and this interaction requires Rad17p. We also show that phosphorylation of Ddc1p depends on the key checkpoint protein Mec1p and also on Rad24p, Rad17p and Mec3p. This suggests that Mec1p might act together with the Rad24 group of proteins at an early step of the DNA damage checkpoint response. On the other hand, Ddc1p phosphorylation is independent of Rad53p and Rad9p. Moreover, while Ddc1p is required for Rad53p phosphorylation, it does not play any major role in the phosphorylation of the anaphase inhibitor Pds1p, which requires RAD9 and MEC1. We suggest that Rad9p and Ddc1p might function in separated branches of the DNA damage checkpoint pathway, playing different roles in determining Mec1p activity and/or substrate specificity.  相似文献   

13.
14.
Components of cellular stress responses can be identified by correlating changes in stress tolerance with gain or loss of function of defined genes. Previous work has shown that yeast cells deficient in Ppz1 protein phosphatase or overexpressing Hal3p, a novel regulatory protein of unknown function, exhibit increased resistance to sodium and lithium, whereas cells lacking Hal3p display increased sensitivity. These effects are largely a result of changes in expression of ENA1, encoding the major cation extrusion pump of yeast cells. Disruption or overexpression of HAL3 (also known as SIS2) has no effect on salt tolerance in the absence of PPZ1, suggesting that Hal3p might function upstream of Ppz1p in a novel signal transduction pathway. Hal3p is recovered from crude yeast homogenates by using immobilized, bacterially expressed Ppz1p fused to glutathione S-transferase, and it also copurifies with affinity-purified glutathione S-transferase-Ppz1p from yeast extracts. In both cases, the interaction is stronger when only the carboxyl-terminal catalytic phosphatase domain of Ppz1p is expressed. In vitro experiments reveal that the protein phosphatase activity of Ppz1p is inhibited by Hal3p. Overexpression of Hal3p suppresses the reduced growth rate because of the overexpression of Ppz1p and aggravates the lytic phenotype of a slt2/mpk1 mitogen-activated protein kinase mutant (thus mimicking the deletion of PPZ1). Therefore, Hal3p might modulate diverse physiological functions of the Ppz1 phosphatase, such as salt stress tolerance and cell cycle progression, by acting as a inhibitory subunit.  相似文献   

15.
We have characterized the regulation of spermidine transport in yeast and identified some of the genes involved in its control. Disruption of the SPE2 gene encoding S-adenosylmethionine decarboxylase, which catalyzes an essential step in polyamine biosynthesis, upregulated the initial velocity of spermidine uptake in wild-type cells as well as in the polyamine transport-deficient pcp1 mutants. Exogenous spermidine rapidly inactivated spermidine transport with a half-life of approximately 10-15 min via a process that did not require de novo protein synthesis but was accelerated by cycloheximide addition. Conversely, reactivation of spermidine influx upon polyamine deprivation required active protein synthesis. The stability of polyamine carrier activity was increased 2-fold in polyamine-depleted spe2 deletion mutants, indicating that endogenous polyamines also contribute to the down-regulation of spermidine transport. Ligand-mediated repression of spermidine transport was delayed in end3 and end4 mutants that are deficient in the initial steps of the endocytic pathway, and spermidine uptake activity was increased 4- to 5-fold in end3 mutants relative to parental cells, although the stability of the transport system was similar in both strains. Disruption of the NPR1 gene, which encodes a putative Ser/Thr protein kinase essential for the reactivation of several nitrogen permeases, resulted in a 3-fold decrease in spermidine transport in NH4(+)-rich media but did not prevent its down-regulation by spermidine. The defect in spermidine transport was more pronounced in NH4(+)- than proline-grown npr1 cells, suggesting that NPR1 protects against nitrogen catabolite repression of polyamine uptake activity. These results suggest that (a) the polyamine carrier is an unstable protein subject to down-regulation by spermidine via a process involving ligand inactivation followed by endocytosis and that (b) NPR1 expression fully prevents nitrogen catabolite repression of polyamine transport, unlike the role predicted for that gene by the inactivation/reactivation model proposed for other nitrogen permeases.  相似文献   

16.
Three amino acid residues highly conserved in most proofreading DNA polymerases, a phenylalanine contained in the Exo II motif and a serine and a leucine belonging to the S/TLx2h motif, were recently shown to be critical for 3'-5' exonucleolysis by acting as single-stranded DNA ligands (de Vega, M., Lázaro, J.M., Salas, M. and Blanco, L. (1998) J. Mol. Biol. 279, 807-822). In this paper, site-directed mutants at these three residues were used to analyze their functional importance for the synthetic activities of phi29 DNA polymerase, an enzyme able to start linear phi29 DNA replication using a terminal protein (TP) as primer. Mutations introduced at Phe65, Ser122, and Leu123 residues of phi29 DNA polymerase severely affected the replication capacity of the enzyme. Three mutants, F65S, S122T, and S122N, were strongly affected in their capacity to interact with a DNA primer/template structure, suggesting a dual role during both polymerization and proofreading. Interestingly, mutant S122N was not able to maintain a stable interaction with the TP primer, thus impeding the firsts steps (initiation and transition) of phi29 DNA replication. The involvement of Ser122 in the consecutive binding of TP and DNA is compatible with the finding that the TP/DNA polymerase heterodimer was not able to use a DNA primer/template structure. Assuming a structural conservation among the eukaryotic-type DNA polymerases, a model for the interactions of phi29 DNA polymerase with both TP and DNA primers is presented.  相似文献   

17.
18.
To evaluate whether 1alpha-hydroxycholecalciferol is metabolized to 1alpha,25-dihydroxycholecalciferol in man, [6-3H]1alpha-hydroxycholecalciferol was given intravenously to a patient with renal failure who was maintained daily on 100,000 IU vitamin D and calcium supplements. Using Sephadex LH-20 and high-pressure liquid chromatography, it was clearly demonstrated that 1alpha-hydroxycholecalciferol rapidly disappears from the blood and is metabolized to 1alpha,25-dihydroxycholecalciferol.  相似文献   

19.
The t(3;21)(q26;q22) chromosomal translocation associated with blastic crisis of chronic myelogenous leukemia results in the formation of the AML1/Evi-1 chimeric protein, which is thought to play a causative role in leukemic transformation of hematopoietic cells. Here we show that AML1/Evi-1 represses growth-inhibitory signaling by transforming growth factor-beta (TGF-beta) in 32Dcl3 myeloid cells. The activity of AML1/Evi-1 to repress TGF-beta signaling depends on the two separate regions of the Evi-1 portion, one of which is the first zinc finger domain. AML1/Evi-1 interacts with Smad3, an intracellular mediator of TGF-beta signaling, through the first zinc finger domain, and represses the Smad3 activity, as Evi-1 does. We also show that suppression of endogenous Evi-1 in leukemic cells carrying inv(3) restores TGF-beta responsiveness. Taken together, AML1/Evi-1 acts as an inhibitor of TGF-beta signaling by interfering with Smad3 through the Evi-1 portion, and both AML1/Evi-1 and Evi-1 repress TGF-beta-mediated growth suppression in hematopoietic cells. Thus, AML1/Evi-1 may contribute to leukemogenesis by specifically blocking growth-inhibitory signaling of TGF-beta in the t(3;21) leukemia.  相似文献   

20.
The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号