首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
最近几年来,一种新的油料处理工艺——挤压膨化技术,在巴西、美国、阿根廷、墨西哥等国迅速发展、应用。这种新工艺的主要特点是经过挤压膨化的油料,可以使溶剂浸出器的生产率提高50%左右,粕残油率下降到0.5%以下。此种工艺还能节约能源。  相似文献   

2.
分别以正己烷、甲基戊烷为浸出溶剂,采用四级逆流浸出方式从浸出效果、浸出油品两个方面评价了两种浸出溶剂对浸出膨化大豆料的影响。浸出效果方面,考察了浸出混合油质量分数、浸出湿粕静吸附率、浸出干粕残油率;浸出油品方面,考察了浸出毛油脂肪酸组成、酸值、色泽、微量组分以及残留溶剂,并与正己烷进行比较。结果表明:甲基戊烷各级浸出混合油质量分数相对较高,提油率高;甲基戊烷浸出湿粕静吸附率、浸出干粕残油率分别为(19.00±0.45)%和(0.57±0.08)%,正己烷浸出湿粕静吸附率、浸出干粕残油率分别为(20.65±0.20)%和(0.71±0.01)%;两种溶剂浸出毛油脂肪酸组成无差异,甲基戊烷浸出毛油酸值、总含磷量、残留溶剂含量、生育酚含量、甾醇含量均较低,而角鲨烯含量较高,具有精炼损失少、节能优势。研究表明新型溶剂甲基戊烷是替代正己烷作为浸出溶剂的良好选择。  相似文献   

3.
油菜籽脱皮、挤压膨化、浸出制油新工艺的中试研究   总被引:13,自引:9,他引:13  
报道了一种油菜籽脱皮、挤压膨化、浸出制油新工艺。油菜籽用YTPG100型油菜籽脱皮机脱皮,其脱皮率高达98%,仁皮分离后,仅含皮2%的菜籽仁再经PHJ100型高油份油料挤压膨化机处理,使膨化粒料的含油率下降至27%-28%,经过溶剂浸出后,菜籽粕中的残油率降低到1.5%以内,而粕中蛋白质含量上升到48%左右。  相似文献   

4.
米糠膨化浸出制油工艺中试研究   总被引:3,自引:0,他引:3  
通过米糠膨化浸出制油工艺中间试验。表明了米糠膨化作为米糠浸出制油前处理工艺,是目前国内外米糠制油的先进技术;膨化后的米糠,水分降低30%左右,解脂酶活性得到了有效抑制,贮存性大为提高;用6#溶剂浸出,毛油得率平均为17.5%,出油效率为95%~97%,出率为85%~87%,溶剂损耗平均为4.5kg/t.料,粕残油平均为1.3%左右。本文分析了影响米糖膨化的诸因素与较佳工艺条件,表述了米糠膨化浸出掉  相似文献   

5.
通过对预榨菜籽饼膨化,整理入浸物料的性状,解决了进口油菜籽加工中许多问题。结果表明:预榨饼直接浸出的粕残油在1.3%~1.5%,湿粕含溶为25%~38%。通过膨化后浸出的粕残油降至0.6%~1.0%,湿粕含溶降至15%~20%。提高了出品率,降低了蒸汽消耗。  相似文献   

6.
用普通谷物膨化机进行大豆挤压膨化处理的最佳工艺条件是:原料水分12.8%原料粒度3.2孔/cm筛上物;螺杆转速384r/min。在此条件下所获得的膨化料浸出后粕中残油率低于0.5%,膨化料在浸出速率、溶剂渗滤速度、湿粕含溶量等诸性能上均明显优于轧制坯。  相似文献   

7.
大豆膨化浸出应用的研究   总被引:6,自引:2,他引:6  
大豆膨化浸出在油料加工中具明显的优越性 ,与生坯直接浸出相比生产能力提高 4 0 % ,动力消耗降低 30 % ,蒸汽消耗减少 15 % ,毛油精炼率提高 0 5 % ,成品粕的尿素酶稳定 ,油品和成品粕的质量提高 ,市场销售看好。  相似文献   

8.
介绍了中小型油厂采用大豆膨化浸出的膨化机理,轧坯膨化和粉碎膨化工艺路线,膨化机及其主要参数,生产操作要点及浸出粕质量指标。并从提高生产能力,降低溶剂与能源消耗,节约维修费用等方面比较了膨化浸出的优点,指明了这是一种值得推广的新工艺。  相似文献   

9.
蒸脱机是蒸脱浸出湿粕中溶剂的主要设备。蒸脱工艺和设备设计是否合理,直接影响到蒸脱浸出湿粕的效果,是回收利用溶剂、降低浸出工段溶剂单耗的主要关键之一。浸出湿粕中一般含溶剂在25~30%左右,含水8~9%左右,含油1%以下,湿粕经蒸脱机蒸脱后,成品粕中主要技术指标:粕中残余溶剂800PPm以下,粕中水份在10~11%左右;粕色泽正常。我厂设计的国内无类型的新型蒸脱机自1984年1月试车投产以来,各项主要技术指标据测定数据证明:此工艺和设备的设计是合理的,完全达到技术设计要求;投产  相似文献   

10.
菜籽浸出各阶段浸出油量、油质变化   总被引:1,自引:0,他引:1  
模拟现行菜籽制油工艺,对经机械预榨菜籽饼(含油量17%左右)连续进行间歇式浸出。 测定各阶段浸出油量、油质。浸出13次,每次15分钟,粕饼残油率可达1.0%。前6次浸 出,可使粕饼残油率达到2.0%左右;后7次浸出,使粕饼残油率由约2.0%降至约 1.0%。可浸出油量的95%已在前6次浸出中提取出来;后7次浸出,仅提取出可浸出油 量5.0%。浸出油脂质量,愈在浸出后期愈差;表现为色泽加深,酸价升高,不皂化物含量 增多,因而毛油精炼回收率也愈往后愈低。浸出过程后半期,获得油量很少,油质愈来愈 差,增加后续精炼工序的工作量,如考虑能源(电力、蒸汽)与溶剂消耗、人工等成本因素, 现行的油脂浸出工艺,过多地着眼于降低粕饼残油率,浸出时间过长,是否经济合算,值得 进一步探讨。  相似文献   

11.
采用挤压膨化预处理水酶法提取大豆油的同时,也有较高的多肽得率。利用水酶法应用于大豆多肽的提取,并应用响应面优化方法得出大豆挤压膨化后水酶法提取多肽的最佳工艺为加酶量1.6%、酶解温度60℃、酶解时间3h、料水比1:5、酶解pH9.6。经过验证与对比实验可知,在最优酶解工艺条件下大豆多肽得率可达到41.36%左右,比相同酶解条件下未经挤压膨化预处理大豆多肽得率有显著提高。  相似文献   

12.
李杨  江连洲  许晶  胡少新  杨柳 《食品科学》2009,30(22):140-145
采用水酶法结合挤压膨化预处理提取大豆蛋白,筛选5 种蛋白酶,确定选用碱性蛋白酶作为水解酶;得出碱性蛋白酶提取大豆蛋白的最佳条件:加酶量1.9%、酶解温度50℃、酶解时间200min、料水比1:4.6、酶解pH8.5,经过验证与对比实验可知在最优酶解工艺条件下总蛋白提取率可达到93.76%左右,比传统的湿热预处理后酶解的总蛋白提取率78.83% 提高了近15 个百分点。  相似文献   

13.
挤压膨化工艺参数对水酶法提取大豆总蛋白得率的影响   总被引:5,自引:3,他引:2  
采用水酶法结合挤压膨化预处理提取大豆蛋白.通过响应曲面分析方法以总蛋白质得率为考察指标,确定最佳挤压膨化工艺参数为:模孔孔径为12 mm,物料含水率为17%,螺杆转速为94 r/min,套筒温度为92℃.经过验证与对比试验可知在最优挤压膨化工艺条件下总蛋白得率可达到94.17%左右,比传统的湿热预处理后酶解的总蛋白得率提高了近15%.  相似文献   

14.
This study compares the effects of extrusion pretreatment and protease addition during aqueous extraction processing (AEP) of soybean and lupin flakes. AEP of flakes resulted in the lowest yields of oil (56%), protein (71%) and [cream  +  free oil] (8%) for soybean, while for lupin, yields were 48, 69 and 2%, respectively. AEP protein extraction yields were decreased by extrusion pretreatment, but this pretreatment improved enzymatic action, increasing protein extractability from soybean and lupin by 47 and 26%, respectively. For both protein crops, enzyme-assisted AEP (EAEP) of extruded flakes yielded the highest oil, protein and [cream  +  free oil] yields, which were 96, 85 21%, respectively, for soybean. Yields for lupin were 81, 77 and 10%, respectively. Extrusion followed by enzyme addition positively impacted demulsification yield, the creams from EAEP of soybean and lupin extruded flakes being the less stable toward enzymatic demulsification .

PRACTICAL APPLICATIONS


The vegetable oil industry is looking for alternatives to the traditional solvent extraction of oil-bearing seeds, and there is a need to increase the inefficient conventional aqueous extraction of protein from residual defatted meal, a by-product of the oil extraction process. The concept of enzyme-assisted aqueous extraction processing (EAEP) has been successfully developed for extruded soybean material, but its efficiency on other oil-bearing seeds still needs to be demonstrated. By determining the oil and protein extraction yields recovered during EAEP of extruded lupin flakes, the feasibility of transferring this process from soybean to other oilseeds will be established.  相似文献   

15.
生物解离大豆残渣中膳食纤维含量丰富,为明晰生物解离提取法对大豆膳食纤维的改性效果,获取高品质大豆膳食纤维,本研究测定生物解离大豆膳食纤维的纯度、理化性质及功能特性,并与水提法天然大豆膳食纤维,化学法、发酵法及挤压膨化法改性大豆膳食纤维进行对比。结果表明:生物解离大豆膳食纤维纯度可达82.58%,其中可溶性膳食纤维含量约占总膳食纤维的60%,属于优质膳食纤维;生物解离膳食纤维的持水性、持油性、膨胀性和溶解性分别为6.87 g/g、5.48 g/g、8.22 mL/g和5.07%,均明显高于其他方式提取的膳食纤维。功能特性测定结果表明,不同方式提取的膳食纤维功能特性强弱次序均为生物解离膳食纤维>挤压膨化法改性膳食纤维>发酵法改性膳食纤维>化学法改性膳食纤维>水提法膳食纤维。生物解离膳食纤维在pH 7.0时对Pb2+、As+、Cu2+ 3 种重金属离子吸附能力分别为351.2、304.1、214.1 μmol/g。此外,生物解离大豆膳食纤维的葡萄糖吸收能力、α-淀粉酶抑制能力和胆汁酸阻滞指数分别为6.56~35.78 mmol/g、18.42%和33.12%~35.52%,均显著高于其余提取方式的膳食纤维。因此,生物解离提取法对大豆膳食纤维改性效果显著,生物解离残渣可作为一种新型的膳食纤维来源进行开发应用。  相似文献   

16.
挤压膨化加工对大豆浸出性能的影响   总被引:2,自引:0,他引:2  
陈玉芳 《中国油脂》2004,29(10):16-19
主要研究了用挤压膨化机加工大豆制得的膨化料坯浸出后,豆粕残油率随加工参数变化的情况.通过采用试验与理论分析相结合的方法,探讨了挤压膨化机加工参数对豆粕残油率的影响规律.研究表明,原料含水量严重影响着膨化料坯的浸出性能,加热温度升高使豆粕残油率显著降低,挤压膨化机内压力越小,豆粕残油率越高,当挤压膨化机螺杆转速在一定范围内,豆粕残油率随着螺杆转速增加而下降.  相似文献   

17.
为提高豆渣利用率,改善其风味和口感,拓宽豆渣在食品领域的应用,本研究以豆渣为主要原料,与低筋粉进行调配后制得复配粉,并对其进行挤压膨化处理。以可溶性膳食纤维含量为指标,采用响应面法优化挤压膨化工艺。通过傅立叶红外光谱和粒度仪对挤压膨化前后复配粉的官能团及粒度进行分析,差示量热扫描对其进行稳定性分析。结果表明,最佳挤压膨化加工参数为物料水分30%、挤压温度180℃、螺杆转速160 r/min。此时复配粉中可溶性膳食纤维含量由3.11%提升至15.47%,挤压膨化后复配粉的持水性由3.45 g/g提升至4.86 g/g,复配粉的持油性由2.27 g/g提升至4.85 g/g;挤压膨化后复配粉中的膳食纤维,红外光谱图具有显著的糖类特征吸收峰;挤压膨化后复配粉中的可溶性膳食纤维粒度减小;挤压膨化后复配粉具有高度的热稳定性。综上,经过挤压膨化改性后豆渣复配粉的理化性质有着明显的提升,本研究为豆渣改性利用提供了理论依据。  相似文献   

18.
以豆渣为原料,采用挤压膨化法对豆渣可溶性膳食纤维(soluble dietary fiber,SDF)进行研究。通过预实验,确定加入质量分数为20%的淀粉膨润剂。以挤压前后豆渣SDF的增量作为评定指标,研究豆渣含水率、物料温度及螺杆转速对豆渣SDF增加率的影响。结果表明:采用挤压膨化处理后,豆渣中戊糖较己糖、糖醛酸增幅大。通过正交试验,对工艺参数进行优化,结果表明:当含水率17%、螺杆转速150r/min、温度180℃时,SDF增加率可达到199.64%。此时,豆渣膳食纤维持水力为1430%、溶胀力为16.7mL/g,分别比豆渣原料提高了94%和125%。  相似文献   

19.
Extruded weaning foods were produced using cowpea + corn + soybean + soybean oil (35:50:10:5, w/w) and cowpea + corn + peanut (42:43:15, w/w) by twin screw extrusion and fortified with vitamin premix. A direct solvent extraction method was used to assay fortified α-tocopheryl acetate as the ester to differentiate it from the naturally occurring alcohol for accurate assessment of total vitamin E activity. The fortified retinyl palmitate was assayed from the same extraction and assayed as the more stable ester with the same LC conditions after changing the detection wavelengths. Using direct solvent extraction, analytical values of vitamin E homologs in extruded products were higher than those values from saponification.  相似文献   

20.
Oil, protein and solid extraction yields obtained during aqueous extraction processing (AEP) of full fat soybean flakes (FFSF), FFSF extruded at a die temperature of 100 °C and FFSF pressurised at 200 and 500 MPa for 15 min at 25 °C, were compared to those obtained during enzyme-assisted aqueous extraction processing (EAEP) using 0.5% of protease Protex 7L. Without enzyme addition, pretreatment of the FFSF with extrusion and 500 MPa increased and decreased, respectively, the oil extraction yield while protein extraction yield was significantly decreased after both treatments. The best treatment in terms of oil and protein recovery was EAEP of extruded flakes with 90% and 82% of oil and protein extraction yield, respectively, and 17% of free oil. Addition of protease during extraction significantly decreased the yield of isolated soy protein (ISP) due to an increased solubility of the proteins at pH 4.5. ISP from extruded EAEP had higher solubility at pH 7.0 and better functionality. The DSC results, combined with the protein extraction yields, showed that a proportion of the proteins became insoluble after extrusion and 500 MPa treatment, while only those extracted from 500 MPa FFSF had a reduced native state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号