首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new technique for the solution of singular integral equations is proposed, where the unknown function may have a particular singular behaviour, different from the one defined by the dominant part of the singular integral equation. In this case the integral equation may be discretized by two different quadratures defined in such a way that the collocation points of the one correspond to the integration points of the other. In this manner the system is reduced to a n × n system of discrete equations and the method preserves, for the same number of equations, the same polynomial accuracy. The main advantage of the method is that it can proceed without using special collocation points. This new technique was tested in a series of typical examples and yielded results which are in good agreement with already existing solutions.  相似文献   

2.
A method for the numerical solution of singular integral equations with kernels having a singularity of the Cauchy type is presented. The singular behavior of the unknown function is explicitly built into the solution using the index theorem. The integral equation is replaced by integral relations at a discrete set of points. The integrand is then approximated by piecewise linear functions involving the value of the unknown function at a finite set of points. This permits integration in a closed form analytically. Thus the problem is reduced to a system of linear algebraic equations. The results obtained in this way are compared with the more sophisticated procedures based on Gauss-Chebyshev and Lobatto-Chebyshev quadrature formulae. An integral equation arising in a crack problem of the classical theory of elasticity is used for this purpose.  相似文献   

3.
The problem of singular stresses in an infinite elastic solid containing a spherical cavity and a flat annular crack subjected to axial tension is considered. By application of an integral transform method and the theory of triple integral equations the problem is reduced to that of solving a singular integral equation of the first kind. The singular integral equation is solved numerically, and the influence of the spherical cavity upon the stress intensity factor and the influence of the annular crack upon the maximum stress at the surface of the spherical cavity are shown graphically in detail.  相似文献   

4.
Summary A new method is proposed, by using some special quadrature rules, for the numerical evaluation of the general type of finite-part singular integrals and integral equations with logarithmic singularities. In this way the system of such equations can be numerically solved by reduction to a system of linear equations. For this reduction, the singular integral equation is applied to a number of appropriately selected collocation points on the integration interval, and then a numerical integration rule is used for the approximation of the integrals in this equation. An application is given, to the determination of the intensity of the logarithmic singularity in a simple crack inside an infinite, isotropic solid.With 1 Figure  相似文献   

5.
Summary As is well-known, an efficient numerical technique for the solution of Cauchy-type singular integral equations along an open interval consists in approximating the integrals by using appropriate numerical integration rules and appropriately selected collocation points. Without any alterations in this technique, it is proposed that the estimation of the unknown function of the integral equation is further achieved by using the Hermite interpolation formula instead of the Lagrange interpolation formula. Alternatively, the unknown function can be estimated from the error term of the numerical integration rule used for Cauchy-type integrals. Both these techniques permit a significant increase in the accuracy of the numerical results obtained with an insignificant increase in the additional computations required and no change in the system of linear equations solved. Finally, the Gauss-Chebyshev method is considered in its original and modified form and applied to two crack problems in plane isotropic elasticity. The numerical results obtained illustrate the powerfulness of the method.  相似文献   

6.
The plane problem of two bonded elastic half planes containing a finite crack perpendicular to and going through the interface is considered. The problem is formulated as a system of singular integral equations with generalized Cauchy kernels. Even though the system has three irregular points, it is shown that the unknown functions are algebraically related at the irregular point on the interface and the integral equations can be solved by a method developed previously. The system of integral equations is shown to yield the same characteristic equation as that for two bonded quarter planes in the general case of the through crack, and the characteristic equation for a crack tip terminating at the interface in the special case. The numerical results given in the paper include the stress intensity factors at the crack tips, the normal and shear components of the stress intensity factors at the singular point on the interface, and the crack surface displacements.  相似文献   

7.
A numerical solution of integral equations typically requires calculation of integrals with singular kernels. The integration of singular terms can be considered either by purely numerical techniques, e.g. Duffy's method, polar co‐ordinate transformation, or by singularity extraction. In the latter method the extracted singular integral is calculated in closed form and the remaining integral is calculated numerically. This method has been well established for linear and constant shape functions. In this paper we extend the method for polynomial shape functions of arbitrary order. We present recursive formulas by which we can extract any number of terms from the singular kernel defined by the fundamental solution of the Helmholtz equation, or its gradient, and integrate the extracted terms times a polynomial shape function in closed form over plane triangles or tetrahedra. The presented formulas generalize the singularity extraction technique for surface and volume integral equation methods with high‐order basis functions. Numerical experiments show that the developed method leads to a more accurate and robust integration scheme, and in many cases also a faster method than, for example, Duffy's transformation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the interface cracking between a functionally graded material (FGM) and an elastic substrate is analyzed under antiplane shear loads. Two crack configurations are considered, namely a FGM bonded to an elastic substrate containing a single crack and a periodic array of interface cracks, respectively. Standard integral-transform techniques are employed to reduce the single crack problem to the solution of an integral equation with a Cauchy-type singular kernel. However, for the periodic cracks problem, application of finite Fourier transform techniques reduces the solution of the mixed-boundary value problem for a typical strip to triple series equations, then to a singular integral equation with a Hilbert-type singular kernel. The resulting singular integral equation is solved numerically. The results for the cases of single crack and periodic cracks are presented and compared. Effects of crack spacing, material properties and FGM nonhomogeneity on stress intensity factors are investigated in detail.  相似文献   

9.
A convenient and efficient numerical method is presented for the treatment of Cauchy type singular integral equations of the second kind. The solution is achieved by splitting the Cauchy singular term into two parts, allowing one of the parts to be determined in a closed-form while the other part is evaluated by standard Gauss-Jacobi mechanical quadrature. Since the Cauchy singularity is removed after this manipulation, the quadrature abscissas and weights may be readily available and the placement of the collocation points is flexible in the present method. The method is exact when the unknown function can be expressed as the product of a fundamental function and a polynomial of degree less than the number of the integration points. The proposed algorithm can also be extended to the case where the singularities are complex and is found equally effective. The proposed algorithm is easy to implement and provides a shortcut for programming the numerical solution to the singular integral equation of the second kind.  相似文献   

10.
The solution of crack problems in plane or antiplane elasticity can be reduced to the solution of a singular integral equation along the cracks. In this paper the Radau-Chebyshev method of numerical integration and solution of singular integral equations is modified, through a variable transformation, so as to become applicable to the numerical solution of singular integral equations along semi-infinite intervals, as happens in the case of semi-infinite cracks, and the direct determination of stress intensity factors at the crack tips. This technique presents considerable advantages over the analogous technique based on the Gauss-Hermite numerical integration rule. Finally, the method is applied to the problems of (i) a periodic array of parallel semi-infinite straight cracks in plane elasticity, (ii) a similar array of curvilinear cracks, (iii) a straight semi-infinite crack normal to a bimaterial interface in antiplane elasticity and (iv) a similar crack in plane elasticity; in all four applications appropriate geometry and loading conditions have been assumed. The convergence of the numerical results obtained for the stress intensity factors is seen to be very good.  相似文献   

11.
This paper investigates the Zener–Stroh crack with curved configuration in plane elasticity. A singular integral equation is suggested to solve the problem. Formulae for evaluating the SIFs and T-stress at the crack tip are suggested. If the curve configuration is a product of a small parameter and a quadratic function, a perturbation method based on the singular integral equation is suggested. In the method, the singular integral equation can be expanded into a series with respect to the small parameter. Therefore, many singular integral equations can be separated from the same power order for the small parameter. These singular integral equations can be solved successively. The solution of the successive singular integral equations will provide results for stress intensity factors and T-stress at the crack tip. It is found that the behaviors for the solution of SIFs and T-stress in the Zener–Stroh crack and the Griffith crack are quite different. This can be seen from the presented comparison results.  相似文献   

12.
A well-known method for the solution of plane elasticity problems consists in reducing them to singular integral equations with Cauchy-type kernels. In this paper a numerical technique is presented for the efficient solution of such equations near corner points and the determination of the corresponding stress intensity factors under symmetry conditions so that only Mode I stress intensity factors exist. The peculiarity of the method consists in taking into account all poles of the kernel of a singular integral equation and at the same time using collocation points outside the integration interval. Two applications of the method to V-notched and cracked media are also made.  相似文献   

13.
The problem of the stress-strain state of an elastoplastic spherical shell with two colinear cracks is reduced to a system of singular integral equations with unknown integration limits and discontinuous right-hand sides. The system obtained is solved simultaneously for conditions of stress finiteness and plasticity. The algorithm of the numerical solution of such a system, which is based on the method of mechanical quadratures, is constructed. The dependence of the opening of the crack tips on the applied load and the distance between the crack centers is analyzed numerically.Translated from Problemy Prochnosti, No. 8, pp. 24–28, August, 1994.  相似文献   

14.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

15.
This paper is concerned with a method of decreasing stress concentration due to a notch and a hole by providing additional holes in the region of the principal notch or hole. A singular integral equation method that is useful for this optimization problem is discussed. To formulate the problem the idea of the body force method is applied using the Green's function for a point force as a fundamental solution. Then, the interaction problem between the principal notch and the additional holes is expressed as a system of singular integral equations with a Cauchy-type singular kernel, where densities of the body force distribution in the x- and y-directions are to be unknown functions. In solving the integral equations, eight kinds of fundamental density functions are applied; then, the continuously varying unknown functions of body force densities are approximated by a linear combination of products of the fundamental density functions and polynomials. In the searching process of the optimum conditions, the direction search of Hooke and Jeeves is employed. The calculation shows that the present method gives the stress distribution along the boundary of a hole very accurately with a short CPU time. The optimum position and the optimum size of the auxiliary hole are also determined efficiently with high accuracy.  相似文献   

16.
Y. Shindo 《Acta Mechanica》1988,73(1-4):147-162
Summary The impact response of a crack in a semi-infinite body with a surface layer which is subjected to antiplane shear deformation is considered in this study. The semi-infinite body contains a crack near an interface. Using Laplace and Fourier transforms, the case of a crack perpendicular to the interface is reduced to a set of triple integral equations in the Laplace transform plane. The solution to the triple integral equations is then expressed in terms of a singular integral equation of the first kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factors at the crack tips are obtained for several values of time, material constants, and geometrical parameters.With 8 Figures  相似文献   

17.
Abstract

A novel integral equation method is developed in this paper for the analysis of two‐dimensional general anisotropic elastic bodies with cracks. In contrast to the conventional boundary integral methods based on reciprocal work theorem, the present method is derived from Stroh's formalism for anisotropic elasticity in conjunction with Cauchy's integral formula. The proposed boundary integral equations contain boundary displacement gradients and tractions on the non‐crack boundary and the dislocations on the crack lines. In cases where only the crack faces are subjected to tractions, the integrals on the non‐crack boundary are non‐singular. The boundary integral equations can be solved using Gaussian‐type integration formulas directly without dividing the boundary into discrete elements. Numerical examples of stress intensity factors are given to illustrate the effectiveness and accuracy of the present method.  相似文献   

18.
Plates governed by Kirchhoff's equation have been analysed by the boundary integral equation method using the fundamental solution of the biharmonic equation. In the case of supported plates, the boundary conditions permit the uncoupling of the field equation into two harmonic equations that originate, due to the nature of the fundamental solution, easier integration kernels and a simpler system of equations. The calculation of bending and twisting moments and transverse shear force can be formed, combining derivatives of the integral equation which defines the expression of the deflection on any point of the plate. The uncoupling of the biharmonic equation into two Poisson's equations involves the discretization of the domain of the studied problems. Nevertheless, the unknown quantity of the problem does not appear in the domain integrations for which a refined discretization is unnecessary. In the paper, however, a numerical alternative is considered to express the domain integral by means of boundary integrals. In this way, we need only discretize the boundary of the plate, making it necessary to solve a supplementary system of equations in order to calculate the coefficients of the approximation carried out.  相似文献   

19.
This paper is concerned with numerical solutions of singular integral equations with Cauchy-type singular kernel. It is well-known that this type of singular integral equations appears in the analysis of crack problems using the continuously distributed dislocation method. In addition, it also appears in the analysis of notch problems using the body force method. In the present analysis, the unknown function of densities of dislocations and body forces are approximated by the product of the fundamental density functions and polynomials. The accuracy of stress intensity factors and stress concentration factors obtained by the present method is verified through the comparison with the exact solution and the reliable numerical solution obtained by other researchers. The present method is found to give good convergency of the numerical results for notch problem as well as internal and edge crack problems.  相似文献   

20.
Three iterative methods for the numerical determination of stress intensity factors at crack tips (by using the method of singular integral equations with Cauchy-type kernels) are proposed. These methods are based on the Neumann iterative method for the solution of Fredholm integral equations of the second kind. Two of these methods are essentially used for the solution of the system of linear algebraic equations to which the singular integral equation is reduced when the direct Lobatto-Chebyshev method is used for its approximate solution, whereas the third method is a generalization of the first two and is related directly to the singular integral equation to be solved. The proposed methods are useful for the determination of stress intensity factors at crack tips. Some numerical results obtained in a crack problem show the effectiveness of all three methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号