首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following addition of 0.1, 0.25, 0.35, 0.5 and 1.0 per cent triethanolamine, studies have been made of the hydration and hardening characteristics of (a) tricalcium aluminate, (b) tricalcium aluminate + gypsum, (c) tricalcium silicate, (d) dicalcium silicate, and (e) portland cement. Triethanolamine (TEA) accelerated the hydration of 3CaO.Al2O3 and 3CaO.Al2O3-CaSO4.2H2O systems and extended the induction period of the hydration of 3CaO.SiO2. In portland cement paste TEA decreased the strength at all ages and setting characteristics were drastically altered, especially at higher TEA contents. Evidence was obtained also of the formation of a complex of TEA with the hydrating silicate phase.  相似文献   

2.
Calcined clay blended cements play a major role in cement industry's strategy to reduce CO2 emissions. During their hydration, an accelerated aluminate reaction is often observed to affect the sulfate balance. The objective of this study was to provide insights into the influence of different calcined clays on the hydration of cubic tricalcium aluminate (C3A). A cementitious model system consisting of cubic C3A, quartz powder, calcium sulfate and a model pore solution was investigated. The influence of three different calcined clays and one nanolimestone was examined by a successive replacement of the quartz powder and variation of the calcium sulfate. Heat flow and hydrate phase development were followed by isothermal calorimetry and quantitative in-situ X-ray diffraction. Accelerated ettringite formation and sulfate depletion were observed for all calcined clays, while the nanolimestone exhibited the opposite effect. It was found that adsorption of SO4 ions and/or Ca-SO4-complexes at the surface of calcined clay particles is the main factor inhibiting retardation of the C3A hydration in absence of a silicate reaction. In the Al-rich systems a retardation through sulfate adjustment seems to be impeded by additional Al ions, which react with Ca adsorbed onto and leached from the C3A surface.  相似文献   

3.
This work examined the effects of seawater (SW) on the hydration of tricalcium aluminate (C3A) in C3A–gypsum and C3A–gypsum–Ca(OH)2 systems through the characterization of hydration heat release, the evolution of aqueous phase composition and hydration products with the hydration time. It was found that SW increased the dissolution driving force of C3A and solubility of gypsum, which accelerated the early hydration of C3A and the formation of ettringite (AFt), leading to a higher hydration degree of C3A at an early age compared with the deionized (DI) water–mixed pastes. After gypsum depletion to form AFt, and in the absence of Ca(OH)2, the formation of chloroaluminate hydrates was slower due to the insufficient Ca resulted in an accumulation of Al in solution. This would delay the subsequent transformation of AFt to monosulfate (SO4–AFm) and the formation of hydrogarnet (C3AH6), which would further reduce the hydration degree of the C3A at the later ages. However, in the presence of Ca(OH)2, the hydration degree of C3A–gypsum–Ca(OH)2 at later ages was increased, which was similar to that of the corresponding DI pastes. This can be inferred that the amount of Ca available in SW-mixed cement concrete can affect the hydration degree of C3A in cement.  相似文献   

4.
The hydration of tricalcium silicate (C3S) was studied by secondary neutrals mass spectrometry (SNMS), a method that enables determination of the Ca/Si ratio of the formed calcium silicate hydrate (C-S-H) phase with an extremely low information depth. It was found that the magnitude of this parameter within the hydrate layer formed at the surface of the nonhydrated C3S is not constant and increases with increasing distance from the liquid-solid interface. It was also found that, at a constant distance from the surface, the Ca/Si ratio declines with hydration time. The kinetics of the hydration process is characterized by a very fast initial reaction, followed by a dormant period and a subsequent period of renewed hydration. The rate of hydration becomes distinctly accelerated by elevated temperature and retarded by the presence of sucrose, while NaCl affects the initial hydration kinetics only to a small degree.  相似文献   

5.
The influence of Fe2O3 on the hydration kinetics of tricalcium aluminate (C3A) was studied in order to clarify the mechanism of improving hydration resistance of CaO by in-situ synthesized tricalcium aluminate. The Krstulovic-Dabic model was used to investigate the hydration processes of Fe2O3-C3A solid solution and calculate the corresponding kinetic parameters. The hydration products were analyzed by the X-ray diffraction and scanning electron microscope. The results indicated that the Krstulovic-Dabic model simulated the hydration processes of Fe2O3-C3A solid solution at different stages effectively. The hydraulic activity of Fe2O3-C3A solid solution decreased with the addition of Fe2O3. Reasonable amount of Fe2O3 addition reduced the hydration rate in the initial stage of Fe2O3-C3A solid solution hydration, while the hydration rate of Fe2O3-C3A solid solution was increased with excessive amount Fe2O3. The hydration process was controlled by multiple mechanisms due to an incomplete layer of hydration products was formed on the surface.  相似文献   

6.
Results of following the quantities of free Ca(OH)2 and of tricalcium silicate (C3S) during the hydration of C3S, and also the influence of the presence of free CaO on this reaction are in accordance with the hypothesis of Stein & Stevels with regard to the hydration of C3S. at the first contact between C3S and water, a surface hydrate, invisible by electron microscope methods, is considered to be formed and to retard the reaction strongly. This hydrate is thought to change into one which retards the hydration reaction less and changes later into a third hydrate, tobermorite gel.  相似文献   

7.
C3A-containing CaO specimen was prepared and the evolution of its microstructure during hydration process was investigated to clarify the protective mechanism of tricalcium aluminate (C3A) on hydration resistance of CaO specimen. The slit-shaped micropores were formed on the grain boundary of CaO due to the stacking of lamellar C4AH13 formed by the hydration of C3A. The contact area of residual C3A with the moisture was reduced by the porous C4AH13 layer at the original site, which resulted in a slower dissolution rate of C3A grain through the porous layer. In addition, the crack propagation and the formation of macropores were inhibited by the pinning effect of C4AH13, which was beneficial to the improvement of hydration resistance.  相似文献   

8.
Amorphous silica influences tricalcium aluminate (C3A) hydration both in pastes and in suspensions. Two heat peaks are found by isothermal calorimetry during the paste hydration of C3A. The addition of amorphous silica causes the second heat peak to shift towards shorter reaction times and become more pronounced. In suspensions, the change in ion concentration in the water phase is not influenced by the presence of amorphous silica except that the change in concentration occurs more quickly. Quantitative X-ray analysis shows that more 3CaO.Al2O3.6H2O is present in suspensions containing amorphous silica than in silica-free suspensions at equal hydration times.  相似文献   

9.
The hydration characteristics of 3CaO.SiO2 or β2CaO.SiO2 are studied by an addition of 0.0, 0.1, 0.5 or 1.0% triethanolamine. The amount of Ca(OH)2 found at 1, 3, 7 or 28 days was in the order C3S + 0% TEA > C3S +0.1% TEA > C3S + 0.5% TEA > C3S+1.0% TEA, irrespective of whether lime was estimated by X-ray, DTA, TGA or chemical analysis. The rate of hydration, in terms of the disappearance of 3CaO.SiO2, showed that hydration proceeded faster in the presence of TEA after 1 day. Additions of TEA increase the induction period, promote the formation of a C-S-H with higher CaO/SiO2 ratio, increase the formation of non-crystalline Ca(OH)2 and enhance the surface area of the hydrated silicate product.  相似文献   

10.
This article reports on the study to evaluate the potential possibility of regulating the tricalcium aluminate (C3A) hydration process by the addition of calcium sulfite hemihydrate. The kind and the form of hydration products were studied in the system: C3A-CaSO3·0.5H2O-H2O and C3A-CaSO3·0.5H2O-Ca(OH)2-H2O by use of XRD, DTA and SEM/EDS methods as well as the kinetics of hydration along with chemical composition development of the liquid phase. The results thus obtained were compared to the hydration process of C3A with the addition of natural gypsum. The results show that the reaction rate of C3A with the addition of calcium sulfite hemihydrate differs from the analogous hydration process of C3A in the presence of calcium sulfate dihydrate. Also, the kind of hydration products obtained in the presence of CaSO3·0.5H2O is different.  相似文献   

11.
To understand the mechanisms and the parameters controlling the reactivity of tricalcium aluminate in the presence of gypsum at an early age, a study of the hydration of the “C3A-sulphate” system by isothermal microcalorimetry, conductimetry and a monitoring of the ionic concentrations of diluted system suspensions have been carried out with various gypsum quantities. The role of C3A source and its fineness were also studied. This work shows the fast initial formation of AFm phase followed by ettringite formation during the period when the sulphate is consumed. It has been highlighted that the time necessary to consume all the gypsum varies with the type of C3A and it has been attributed to the intrinsic reactivity of each one and mainly to the change of fineness from one C3A to another. Results are discussed alongside hypothesis from the literature to explain the slowing down of C3A hydration process in the presence of calcium sulphate.  相似文献   

12.
13.
The effect of different percentages of cement components (tricalcium aluminate C3A) on the corrosion of embedded reinforcing steel bars was studied in presence of 5% NaCl or 5% MgSO4 solutions. Different electrochemical techniques namely; half-cell potential measurement, impressed voltage method and impressed current method were used. The C3A in cement reduced greatly the corrosion of steel bars embedded in concrete subjected to chloride or sulphate solutions. In chloride solution, as the percent of C3A increased in cement from 2% to 10% the steel corrosion decreased proportionally. The rate of corrosion in 5% MgSO4 solution was decreased as the percent of C3A increased from 2% to 6%. From 6% to 10% the steel corrosion rate was rapidly accelerated. In general the presence of chloride and sulphate solutions in surrounding media reduced the destructive effect of sulphate ions on embedded steel bars.  相似文献   

14.
The tricalcium aluminte phase was prepared from pure chemicals on a laboratory scale. Five mixes were formulated from the prepared C3A phase, β-hemihydate, phosphogypsum, calcium hydroxide and quartz. Different mixes were hydrated at various time intervals, namely, 6, 24, 72 and 168 h. The kinetics of hydration was measured from chemically combined water and combined lime contents. The phase compositions and microstructures of the hydrated products were studied by X-ray diffraction (XRD), differential thermal analysis (DTA)/TG, scanning electron microscopy (SEM) techniques and FT-IR spectroscopy. This work aimed to study the effect of partial to full substitution of phosphogypsum by β-hemihydate on the hydration characteristics and microstructures of tricalcium aluminte phase. The results showed that the combined lime slightly increases with the increase of amounts of phosphogypsum. The XRD patterns showed the increase in the intensities of monosulphate and different forms of calcium aluminate (C4AH13 and C4AH19) with phosphogypsum content. Ettringite is less stable than monosulphoaluminate, so it transformed into monosulpho-aluminate after 24 h, which persisted up to 168 h. The mechanism of the hydration process of C3A phase in the presence of phosphogypsum proceeds in a similar path as with β-hemihydate. Phosphogypsum reacts with C3A in the presence of Ca(OH)2 forming sulphoaluminate hydrates, which are responsible for setting regulation in cementitious system.  相似文献   

15.
The mutual interaction of tricalcium silicate (C3S) and β-dicalcium silicate (β-C2S) in their combined hydration was studied. The rate of β-C2S hydration was accelerated significantly in the presence of C3S. The rate of C3S hydration was retarded, but only in the presence of large amounts of β-C2S. The stoichiometric composition and the pore structure of the hydrates formed was altered only unsignificantly when both compound hydrated simultaneously.  相似文献   

16.
The hydration of tricalcium silicate (C3S)—the major phase in cement—is effectively arrested when the activity of water (aH) decreases below the critical value of 0.70. While it is implicitly understood that the reduction in aH suppresses the hydration of tricalcium aluminate (C3A: the most reactive phase in cement), the dependence of kinetics of C3A hydration on aH and the critical aH at which hydration of C3A is arrested are not known. This study employs isothermal microcalorimetry and complementary material characterization techniques to elucidate the influence of aH on the hydration of C3A in [C3A + calcium sulfate (C$) + water] pastes. Reductions in water activity are achieved by partially replacing the water in the pastes with isopropanol. The results show that with decreasing aH, the kinetics of all reactions associated with C3A (eg, with C$, resulting in ettringite formation; and with ettringite, resulting in monosulfoaluminate formation) are proportionately suppressed. When aH ≤0.45, the hydration of C3A and the precipitation of all resultant hydrates are arrested; even in liquid saturated systems. In addition to—and separate from—the experiments, a thermodynamic analysis also indicates that the hydration of C3A does not commence or advance when aH ≤0.45. On the basis of this critical aH, the solubility product of C3A (KC3A) was estimated as 10−20.65. The outcomes of this work articulate the dependency of C3A hydration and its kinetics on water activity, and establish—for the first time—significant thermodynamic parameters (ie, critical aH and KC3A) that are prerequisites for numerical modeling of C3A hydration.  相似文献   

17.
The effect of glucose and some glucose oxidation products on tricalcium aluminate hydration has been studied. The results are in agreement with the theory that stabilization of hexagonal C4AH13 determines the retardation. It is assumed that the glucose oxidation products are more effective retarders than glucose because they are more stable in alkaline conditions.  相似文献   

18.
The differences between the hydration of Portland cements with single and with mixed sulfate carriers in the presence of triethanolamine (TEA) were investigated, and possible mechanisms were proposed. Without TEA, cements with different types of sulfate carriers (gypsum, hemihydrate, anhydrite, and mixture of these) have a comparable hydration process at the same molar amount of calcium sulfate. At a TEA dosage of 0.5 wt.%, the sample with a mixture of three sulfate carriers shows substantially stronger retardation of the C3S (This publication uses the cement chemist notation: C3S = Ca3SiO5, C2S = Ca2SiO4, C3A = Ca3Al2O6, C4AF = Ca2(Al, Fe)2O5.) hydration than the cements with only one of these sulfate carriers, which is likely caused by the rapid formation of ettringite and the fast depletion of all sulfate carriers. These effects indicate that TEA influences the balance of sulfate carriers with aluminate-containing clinker phases. On the one hand, TEA can disturb the original sulfate balance due to the accelerated dissolution of aluminate-containing clinker phases, especially C4AF. On the other hand, these effects are closely related to the types and amounts of the sulfate carriers in the cement. A higher amount of sulfate carriers can minimize the TEA-related retardation of the C3S hydration, and hemihydrate shows the strongest impact at the same calcium sulfate quantity.  相似文献   

19.
Calcium chloride (CaCl2) is one of the most recognized and effective accelerators of hydration, setting, and early strength development in portland cement and tricalcium silicate (C3S) pastes. The mechanisms responsible for this acceleration, as well as the microstructural consequences, are poorly understood. Soft X-ray transmission microscopy has recently been applied to the study of cementitious materials and allows the observation of hydration in situ over time. This technique was applied to the examination of tricalcium silicates hydrating in a solution containing CaCl2. It appears that CaCl2 accelerates the formation of “inner product” calcium silicate hydrate (C-S-H) with a low-density microstructure.  相似文献   

20.
Tricalcium silicate does not undergo hydration at relative humidities (RH's) below 80%. But, the rate at which its hydration rate decreases as a function of the RH has not yet been elucidated. By invoking correspondence between RH and water activity (aH, unitless), both of which are related to the chemical potential of water, the reaction evolutions of triclinic tricalcium silicate (i.e., T1‐Ca3SiO5 or C3S) are tracked in water + isopropanol (IPA) mixtures, prepared across a wide range of water activities. Emphasis is placed on quantifying the: (a) rate of hydration as a function of aH, and (b) the critical (initial, aH0c or the achieved) water activity at which hydration effectively ceases, i.e., does not progress; here identified to be ≈ 0.70. The hydration of tricalcium silicate is arrested even when the system remains near saturated with a liquid phase, such that small, if any, capillary stresses develop. This suggests that changes in chemical potential induced via a vapor‐phase or liquid‐phase route both induce similar suppressions of C3S hydration. A phase boundary nucleation and growth (pBNG) model is fit to measured hydration rates from the onset of the acceleration period until well beyond the rate maximum when the water activity is altered. The simulations suggest that for a fixed hydrate nucleation density, any water activity reductions consistently suppress the growth of hydration products. Thermodynamic considerations of how water activity changes may influence reactions/hydrate evolutions are discussed. The outcomes improve our understanding of the chemical factors that influence the rate of Ca3SiO5 hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号