首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A full W-band Low Noise Amplifier (LNA) Module is designed and fabricated in this letter. A broadband transition is introduced in this module. The proposed transition is designed, optimized based on the results from numerical simulations. The results show that 1 dB bandwidth of the transition ranges from 61 to 117 GHz. For the purpose of verification, two transitions in back-to-back connection are measured. The results show that transmission loss is only about 0.9-1.7dB. This transition is used to interface integrated circuits to waveguide components. The characteristic of the LNA module is measured after assembly. It exhibits a broad bandwidth of 75 to 110 GHz , has a small signal gain above 21 dB. The noise figure is lower than 5dB throughout the entire W-band (below 3 dB from 89 to 95GHz) at a room temperature. The proposed LNA module exhibits potential for millimeter wave applications due to its high small signal gain, low noise, and low dc power consumption  相似文献   

2.
A low power high gain gain-controlled LNA + mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load. Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNA + mixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNA + mixer, a previous low power LNA + mixer, and the proposed LNA + mixer are presented. The circuit is implemented in 0.18 #m mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2 and consumes 2 mA current under 1.8 V supply.  相似文献   

3.
林楠  方飞  洪志良  方昊 《半导体学报》2014,35(3):035004-6
A broadband programmable gain amplifier(PGA) with a small gain step and low gain error has been designed in 0.13 m CMOS technology. The PGA was implemented with open-loop architecture to provide wide bandwidth. A two-stage gain control method, which consists of a resistor ladder attenuator and an active fine gain control stage, provides the small gain step. A look-up table based gain control method is introduced in the fine gain control stage to lower the gain error.The proposedPGAshows a decibel-linear variable gainfrom4 to20 dB with a gain step of 0.1 dB and a gain error less than˙0.05 dB. The 3-dB bandwidth and maximum IIP3 are 3.8 GHz and 17 dBm, respectively.  相似文献   

4.
A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier (LNA) and a passive mixer with no external balun for near-zero-IF (Intermediate Frequency)/RF (Radio Frequency) applications are described. The LNA, fabricated in the 0.18μm 1P6M CMOS technology, adopts a gain-switched technique to increase the linearity and enlarge the dynamic range. The mixer is an IQ-based passive topology. Measurements of the CMOS chip are performed on the FR-4 PCB and the input is matched to 50Ω. Combining LNA and mixer, the front-end measured performances in high gain state are: -15dB of Sll, 18.5dB of voltage gain, 4.6dB of noise figure, 15dBm of IIP3, 85dBm to -10dBm dynamic range. The full circuit drains 6mA from a 1.8V supply.  相似文献   

5.
A reconfigurable dual-band LNA is presented. The LNA employs switching capacitors and circuit in to realize the dual-band operation. These methodologies are used to design and implement a reconfigurable LNA for IMT-A and UWB application. The LNA is implemented using TSMC-0.13 μm CMOS technology. Measured performance shows an input matching of better than -13.5 dB, a voltage gain of 18-22.8 dB, with an NF of 4.3-4.7 dB in the band of 3.4-3.6 GHz, and an input matching of better than -9.7 dB, a voltage gain of 14.7-22.4 dB, and with an NF of 3.7-4.9 dB in the band of 4.2-4.8 GHz. According to the measure results, the proposed LNA achieves dual-band operation, and it proves the feasibility of the proposed topology.  相似文献   

6.
正This paper presents a wideband low noise amplifier(LNA) for multi-standard radio applications.The low noise characteristic is achieved by the noise-canceling technique while the bandwidth is enhanced by gateinductive -peaking technique.High-frequency noise performance is consequently improved by the flattened gain over the entire operating frequency band.Fabricated in 0.18μm CMOS process,the LNA achieves 2.5 GHz of -3 dB bandwidth and 16 dB of gain.The gain variation is within±0.8 dB from 300 MHz to 2.2 GHz.The measured noise figure(NF) and average HP3 are 3.4 dB and -2 dBm,respectively.The proposed LNA occupies 0.39 mm2 core chip area.Operating at 1.8 V,the LNA drains a current of 11.7 mA.  相似文献   

7.
A CMOS variable gain low noise amplifier(LNA) is presented for 4.2-4.8 GHz ultra-wideband application in accordance with Chinese standard.The design method for the wideband input matching is presented and the low noise performance of the LNA is illustrated.A three-bit digital programmable gain control circuit is exploited to achieve variable gain.The design was implemented in 0.13-μm RF CMOS process,and the die occupies an area of 0.9 mm~2 with ESD pads.Totally the circuit draws 18 mA DC current from 1.2 V DC supply,the LNA exhibits minimum noise figure of 2.3 dB,S(1,1) less than -9 dB and S(2,2) less than -10 dB.The maximum and the minimum power gains are 28.5 dB and 16 dB respectively.The tuning step of the gain is about 4 dB with four steps in all.Also the input 1 dB compression point is -10 dBm and input third order intercept point(IIP3) is -2 dBm.  相似文献   

8.
正A radio frequency(RF) receiver frontend for single-carrier ultra-wideband(SC-UWB) is presented. The front end employs direct-conversion architecture,and consists of a differential low noise amplifier(LNA),a quadrature mixer,and two intermediate frequency(IF) amplifiers.The proposed LNA employs source inductively degenerated topology.First,the expression of input impedance matching bandwidth in terms of gate-source capacitance, resonant frequency and target S_(11) is given.Then,a noise figure optimization strategy under gain and power constraints is proposed,with consideration of the integrated gate inductor,the bond-wire inductance,and its variation.The LNA utilizes two stages with different resonant frequencies to acquire flat gain over the 7.1-8.1 GHz frequency band,and has two gain modes to obtain a higher receiver dynamic range.The mixer uses a double balanced Gilbert structure.The front end is fabricated in a TSMC 0.18-/im RF CMOS process and occupies an area of 1.43 mm~2.In high and low gain modes,the measured maximum conversion gain are 42 dB and 22 dB,input 1 dB compression points are -40 dBm and -20 dBm,and S_(11) is better than -18 dB and -14.5 dB.The 3 dB IF bandwidth is more than 500 MHz.The double sideband noise figure is 4.7 dB in high gain mode.The total power consumption is 65 mW from a 1.8 V supply.  相似文献   

9.
A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier(LNA) and a passive mixer with no external balun for near-zero-IF(Intermediate Frequency)/RF(Radio Frequency) applications are described.The LNA,fabricated in the 0.18μm 1P6M CMOS technology,adopts a gain-switched technique to increase the linearity and enlarge the dynamic range.The mixer is an IQ-based passive topology.Measurements of the CMOS chip are performed on the FR-4 PCB and the input is matched to 50Ω.Combining LNA and mixer,the front...  相似文献   

10.
赵锦鑫  胡雪青  石寅  王磊 《半导体学报》2011,32(10):120-125
This paper presents a fully integrated RF front-end with an automatic gain control(AGC) scheme and a digitally controlled radio frequency varied gain amplifier(RFVGA) for a U/V band China Mobile Multimedia Broadcasting(CMMB) direct conversion receiver.The RFVGA provides a gain range of 50 dB with a 1.6 dB step. The adopted AGC strategy could improve immunity to adjacent channel signal,which is of importance for CMMB application.The front-end,composed of a low noise amplifier(LNA),an RFVGA,a mixer and AGC,achieves an input referred 3rd order intercept point(IIP3) of 4.9 dBm with the LNA in low gain mode and the RFVGA in medium gain mode,and a less than 4 dB double side band noise figure with both the LNA and the RFVGA in high gain mode.The proposed RF front-end is fabricated in a 0.35μm SiGe BiCMOS technology and consumes 25.6 mA from a 3.0 V power supply.  相似文献   

11.
A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced,and includes a noise-cancelling low-noise amplifier(LNA),an RF programmable gain amplifier(RFPGA) and a current communicating passive mixer.The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA.An RFPGA with five stages provides large dynamic range and fine gain resolution.A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor,and optimum linearity and symmetrical mixing is obtained at the same time.The RF front-end is implemented in a 0.25 μm CMOS process.Tests show that it achieves an ⅡP3(third-order intercept point) of –17 dBm,a conversion gain of 39 dB,and a noise figure of 5.8 dB.The RFPGA achieves a dynamic range of –36.2 to 23.5 dB with a resolution of 0.32 dB.  相似文献   

12.
正A wideband low-noise amplifier(LNA) with ESD protection for a multi-mode receiver is presented.The LNA is fabricated in a 0.18-μm SiGe BiCMOS process,covering the 2.1 to 6 GHz frequency band.After optimized noise modeling and circuit design,the measured results show that the LNA has a 12 dB gain over the entire bandwidth, the input third intercept point(IIP3) is -8 dBm at 6 GHz,and the noise figure is from 2.3 to 3.8 dB in the operating band.The overall power consumption is 8 mW at 2.5 V voltage supply.  相似文献   

13.
A fully differential complementary metal oxide semiconductor (CMOS) low noise amplifier (LNA) for 3.1-10.6 GHz ultra-wideband (UWB) communication systems is presented. The LNA adopts capacitive cross-coupling common-gate (CG) topology to achieve wideband input matching and low noise figure (NF). Inductive series-peaking is used for the LNA to obtain broadband flat gain in the whole 3.1-10.6 GHz band. Designed in 0.18 um CMOS technology, the LNA achieves an NF of 3.1-4.7 dB, an Sll of less than -10 dB, an S21 of 10.3 dB with ±0.4 dB fluctuation, and an input 3rd interception point (IIP3) of -5.1 dBm, while the current consumption is only 4.8 mA from a 1.8 V power supply. The chip area of the LNA is 1×0.94 mm^2.  相似文献   

14.
In this paper,we present the design of an integrated low noise amplifier(LNA)for wireless local area network(WLAN)applications in the 5.15-5.825 GHz range using a SiGe BiCMOS technology.A novel method that can determine both the optimum bias point and the frequency point for achieving the minimum noise figure is put forward.The method can be used to determine the optimum impedance over a relevant wider operating frequency range.The results show that this kind of optimizing method is more suitable for the WLAN circuits design.The LNA gain is optimized and the noise figure(NF)is reduced.This method can also achieve the noise match and power match simultaneously.This proposal is applied on designing a LNA for IEEE 802.11a WLAN.The LNA exhibits a power gain large than 16 dB from 5.15 to 5.825 GHz range.The noise figure is lower than 2 dB.The OIP3 is 8 dBm.Also the LNA is matched to 50 Ω input impedance with 6 mA DC current for differential design.  相似文献   

15.
正This paper discusses the design of a wideband low noise amplifier(LNA) in which specific architecture decisions were made in consideration of system-on-chip implementation for radio-astronomy applications.The LNA design is based on a novel ultra-low noise InGaAs/InAlAs/InP pHEMT.Linear and non-linear modelling of this pHEMT has been used to design an LNA operating from 2 to 4 GHz.A common-drain in cascade with a common source inductive degeneration,broadband LNA topology is proposed for wideband applications.The proposed configuration achieved a maximum gain of 27 dB and a noise figure of 0.3 dB with a good input and output return loss(S_(11)—10 dB,S_(22)—11 dB).This LNA exhibits an input 1-dB compression point of-18 dBm,a third order input intercept point of 0 dBm and consumes 85 mW of power from a 1.8 V supply.  相似文献   

16.
陈亮  李智群  曹佳  吴晨健  张萌 《半导体学报》2014,35(1):015002-7
A new broadband low-noise amplifier (LNA) is proposed. The conventional common gate (CG) LNA exhibits a relatively high noise figure, so active gin-boosting technology is utilized to restrain the noise generated by the input transistors and reduce the noise figure. Theory, simulation and measurement are shown. An implemented prototype using 0.13 μm CMOS technology is evaluated using on-wafer probing. S11 and S22 are below -10 dB across 0.1-5 GHz. Measurements also show a gain of 18.3 dB with a 3 dB bandwidth from 100 MHz to 2.1 GHz and an ⅡP3 of-7 dBm at 2 GHz. The measured noise figure is better than 2.5 dB below 2.1 GHz, is better than 4.5 dB below 5 GHz, and at 500 MHz, it gets its minimum value 1.8 dB. The LNA consumes 9 mA from 1.5 V supply and occupies an area of 0.04 mm^2.  相似文献   

17.
A broadband CMOS intermediate frequency (IF) variable-gain amplifier (VGA) for DRM/DAB tuners is presented. The VGA comprises two cascaded stages: one is for noise-canceling and another is for signal-summing. The chip is fabricated in a standard 0.18μm 1P6M RF CMOS process of SMIC. Measured results show a good linear-in-dB gain characteristic in 28 dB dynamic gain range of-10 to 18 dB. It can operate in the frequency range of 30-700 MHz and consumes 27 mW at 1.8 V supply with the on-chip test buffer. The minimum noise figure is only 3.1 dB at maximum gain and the input-referred 1 dB gain compression point at the minimum gain is -3.9 dBm.  相似文献   

18.
A model of Er3+-doped chalcogenide glass (GasGe20Sb10S65) microstructured optical fiber (MOF) amplifier under the excitation of 980 nm is presented to demonstrate the feasibility of it applied for 1.53 μm band optical communications. By solving the Er3+ population rate equations and light power propagation equations, the amplifying performance of 1.53 μm band signals for Er3+-doped chalcogenide glass MOF amplifier is investigated theoretically. The results show that the Er6+-doped chalcogenide glass MOF exhibits a high signal gain and broad gain spectrum, and its maximum gain for small-signal input (-40 dBm) exceeds 22 dB on the 300 cm MOF under the excitation of 200 mW pump power Moreover, the relations of 1.53 μm signal gain with fiber length, input signal power and pump power are analyzed. The results indicate that the Er3+-doped Ga5Ge20Sb10S65 MOF is a promising gain medium which can be applied to broadband amplifiers operating in the third communication window.  相似文献   

19.
A new,low complexity,ultra-wideband 3.1-10.6 GHz low noise amplifier(LNA),designed in a chartered 0.18μm RFCMOS technology,is presented.The ultra-wideband LNA consists of only two simple amplifiers with an inter-stage inductor connected.The first stage utilizing a resistive current reuse and dual inductive degeneration technique is used to attain a wideband input matching and low noise figure.A common source amplifier with an inductive peaking technique as the second stage achieves high flat gain and wide -3 dB bandwidth of the overall amplifier simultaneously.The implemented ultra-wideband LNA presents a maximum power gain of 15.6 dB,and a high reverse isolation of—45 dB,and good input/output return losses are better than -10 dB in the frequency range of 3.1-10.6 GHz.An excellent noise figure(NF) of 2.8-4.7 dB was obtained in the required band with a power dissipation of 14.1 mW under a supply voltage of 1.5 V.An input-referred third-order intercept point(IIP3) is -7.1 dBm at 6 GHz.The chip area,including testing pads,is only 0.8×0.9 mm2.  相似文献   

20.
A CMOS variable gain amplifier(VGA) that adopts a novel exponential gain approximation is presented.No additional exponential gain control circuit is required in the proposed VGA used in a direct conversion receiver.A wide gain control voltage from 0.4 to 1.8 V and a high linearity performance are achieved.The three-stage VGA with automatic gain control(AGC) and DC offset cancellation(DCOC) is fabricated in a 0.18-μm CMOS technology and shows a linear gain range of more than 58-dB with a linearity error less than ±1 dB.The 3-dB bandwidth is over 8 MHz at all gain settings.The measured input-referred third intercept point(IIP3) of the proposed VGA varies from-18.1 to 13.5 dBm,and the measured noise figure varies from 27 to 65 dB at a frequency of 1 MHz.The dynamic range of the closed-loop AGC exceeds 56 dB,where the output signal-to-noise-and-distortion ratio(SNDR) reaches 20 dB.The whole circuit,occupying 0.3 mm^2 of chip area,dissipates less than 3.7 mA from a 1.8-V supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号