首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The influence of low temperature plasma nitriding on the wear and corrosion resistance of AISI 420 martensitic stainless steel was investigated. Plasma nitriding experiments were carried out with DC-pulsed plasma in 25% N2 + 75% H2 atmosphere at 350 °C, 450 °C and 550 °C for 15 h. The composition, microstructure and hardness of the nitrided samples were examined. The wear resistances of plasma nitrided samples were determined with a ball-on-disc wear tester. The corrosion behaviors of plasma nitrided AISI420 stainless steel were evaluated using anodic polarization tests and salt fog spray tests in the simulated industrial environment.The results show that plasma nitriding produces a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer on the AISI 420 stainless steel surface. Plasma nitriding not only increases the surface hardness but also improves the wear resistance of the martensitic stainless steel. Furthermore, the anti-wear property of the steel nitrided at 350 °C is much more excellent than that at 550 °C. In addition, the corrosion resistance of AISI420 martensitic stainless steel is considerably improved by 350 °C low temperature plasma nitriding. The improved corrosion resistance is considered to be related to the combined effect of the solid solution of Cr and the high chemical stable phases of ?-Fe3N and αN formed on the martensitic stainless steel surface during 350 °C low temperature plasma nitriding. However, plasma nitriding carried out at 450 °C or 550 °C reduces the corrosion resistance of samples, because of the formation of CrN and leading to the depletion of Cr in the solid solution phase of the nitrided layer.  相似文献   

2.
C.X. Li  T. Bell 《Corrosion Science》2006,48(8):2036-2049
Samples of an AISI 410 martensitic stainless steel were plasma nitrided at a temperature of 420 °C, 460 °C or 500 °C for 20 h. The composition, microstructure and hardness of the nitrided samples were characterised using a variety of analytical techniques. In particular, the corrosion properties of the untreated and plasma nitrided samples were evaluated using anodic polarisation tests in 3.5% NaCl solution and immersion tests in 1% HCl acidic water solution. The results showed that plasma nitriding produced a relatively thick nitrided case consisting of a compound layer and a nitrogen diffusion layer on the 410 stainless steel surface. Plasma nitriding not only increased the surface hardness but also improved the corrosion resistance of the martensitic stainless steel. In the immersion test, nitrided samples showed lower weight loss and lower corrosion rate than untreated one. In the electrochemical corrosion tests, the nitrided samples showed higher corrosion potentials, higher pitting potentials and greatly reduced current densities. The improved corrosion resistance was believed to be related to the iron nitride compound layer formed on the martensitic stainless steel surface during plasma nitriding, which protected the underlying metal from corrosive attack under the testing conditions.  相似文献   

3.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

4.
Plasma surface nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 350 °C, 420 °C and 500 °C for 10 h using a DC plasma nitriding unit, and the surface properties of the plasma surface engineered samples were systematically evaluated. Experimental results have shown that the surface properties of the plasma nitrided layers in terms of hardness, wear resistance, corrosion behaviour and corrosion-wear resistance are highly process condition dependent, and it is feasible to provide considerable improvement in wear, corrosion and corrosion-wear resistance of 17-4PH steel using optimised plasma treatment conditions. All three treatments can effectively improve the surface hardness and the sliding wear resistance under unlubricated conditions; high temperature (420 °C and 500 °C) treated materials revealed improved corrosion and corrosion-wear properties due to the formation of surface compound layers.  相似文献   

5.
The influence of plasma nitriding on mechanical, corrosion and tribological properties of Ti6Al4V has been investigated using X-ray diffraction, microhardness tester, scanning electron microscopy, pin-on-disc tribotester, electrochemical polarization and impedance spectroscopy. Plasma nitriding treatment of Ti6Al4V has been performed in 25%Ar-75%N2 gas mixture, for treatment times of 1-4 h at the temperatures of 650-750 °C. The corrosion tests were carried out in Ringer solution at 37 °C, and the wear tests were performed in dry sliding conditions. XRD analyses confirm the formation of δ-TiN and tetragonal ?-Ti2N phases in the modified layer. It was observed that the surface hardness and wear resistance increase as the treatment time and temperature increase. The electrochemical impedance measurements indicate a decrease in double layer capacitance value and increase in charge transfer resistance for the nitrided specimens compared to the untreated ones.  相似文献   

6.
In this study, the tribology and cyclic oxidation behavior of plasma nitrided DIN 1.4871 austenitic valve steel were investigated. For this purpose plasma nitriding treatments were carried out in nitrogen and hydrogen with ratio N2/H2: 1/3 at 10 Torr pressure. Nitriding cycles of 400, 450, 500 and 550 °C for 7 h were selected. To remove oxide layer and to enhance diffusion, an effective sputter cleaning procedure was applied in argon and hydrogen gases. The pin-on-disc sliding wear experiments were performed at a load of 6 N and sliding velocity of 0.1 m/s in normal atmosphere under dry condition. Cyclic oxidation tests used to evaluate the oxidation characteristics of the samples consisted of 50 cycles each 30 min at 750 °C. The structure and properties of the samples were examined by optical and scanning electron microscopy (SEM), microhardness measurements and X-ray diffraction. The results indicated plasma nitriding at all temperatures increased the wear resistance of valve steel when sliding against bearing steel. The 550 °C nitrided layer, with CrN, Fe4N and Fe2-3N on the surface, was most effective in improving wear resistance. In the case of cyclic oxidation, the results showed that oxidation resistance depends strongly on nitriding temperature. Nitriding at 450 °C produced a layer of predominantly “S” phase which was more effective in improving the oxidation resistance of valve steel.  相似文献   

7.
AISI 304 austenitic stainless steel was plasma nitrided at the temperature ranging from 410 to 520 °C with pre-shot peening. The structural phases, micro-hardness and electrochemical behavior of the nitrided layer were investigated by optical microscopy, X-ray diffraction, micro-hardness testing and anodic polarization testing. The effects of shot peening on the nitride formation, nitride layer growth and corrosion properties were discussed. The results showed that shot peening enhanced the nitrogen diffusion rate and led to a twice thicker nitrided layer than the un-shot peening samples under the same plasma nitriding conditions (410 °C, 4 h). The nitrided layer was composed of single nitrogen expanded austenite (S-phase) when nitriding below 480 °C, which had combined improvement in hardness and corrosion resistance.  相似文献   

8.
Duplex treatments by thermo reactive diffusion (TRD) chromizing and puls plasma nitriding were carried out on AISI 52100 and 8620 bearing steels. Tribological behaviors of TRD chromized and duplex treated bearing steels were investigated against Al2O3 ball in ball-on-disc system at room temperature and 500 °C. The samples were pack chromized in a furnace at temperature of 1000 °C for 5 h. After chromizing, the samples were puls plasma nitrided for 5 h at 500 °C. The coated steels were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scratch and microhardness testing. Plasma nitriding of chromized steels increased the total thickness of the compound layer. The subsequent plasma nitriding increased the surface hardness to 2135 HK0.025 due to the formation of CrN and Cr2N. The surface hardness and scratch resistance of coating can be increased with duplex treatment of chromizing followed by plasma nitriding, resulting in high wear resistance. Tribological tests indicated that puls plasma nitriding process decreased the coefficient of friction values and wear rate of the chromized steels at room temperature and 500 °C. Also, examination of the worn surface of the samples showed that particularly at high temperature, the oxidized compact layer occurs and tribo-oxidation played an important role in oxidation behaviour of the steels after the duplex treatment.  相似文献   

9.
The effect of different surface treatments on the wear resistance of Ti-6Al-4V alloy has been investigated. For this purpose, plasma nitriding treatment was performed in a gas mixture 75% N2-25% Ar, for 1 h treatment time and at 750 °C. The thin films were deposited using CFUMBS technique. The results showed that more surface roughness was obtained for nitrided specimens compared with thin film deposited specimens. It was also observed that both surface treatments improved the wear resistance of Ti-6Al-4V alloy. It was determined that plasma nitrided specimens exhibited excellent wear resistance compared with thin film deposited ones when applied load increased. Similar results were obtained from surface hardness measurements, and it was observed that load bearing capacity increased after plasma nitriding. The corrosion resistance of both surface treatments showed similar properties.  相似文献   

10.
Plasma nitriding is a promising posttreatment technique to create a nitride layer on electroplated chromium coatings for improving their corrosion resistance. In the present study, the effects of plasma nitriding on the corrosion properties of electroplated chromium/C45 mild steel were investigated using electrochemical characterization. The chromium plated samples were nitrided using a pulsed direct current glow discharge in an NH3 atmosphere. The polarization curve measurement results showed that the plasma nitrided samples exhibited more positive corrosion potentials (Ecorr), smaller corrosion currents (Icorr), and evident passivation when compared with unnitrided chromium plating/substrate system. The high value of Ecorr and low value of Icorr imply an improvement of the corrosion resistance of the coating/substrate system after plasma nitriding.  相似文献   

11.
A wear resistant nitrided layer was formed on 316L austenitic stainless steel substrate by DC plasma nitriding (DCPN). The structural phases, micro-hardness and dry-sliding wear behavior of the nitrided layer were investigated by optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), micro-hardness tester and ring-on-block wear tester. The results show that a single expanded austenite layer (S-phase) and a single CrN nitride layer were formed at 400 °C and 480 °C, respectively. In addition, the S-phase layers formed on the samples exhibited the best dry-sliding wear resistance under ring-on-block contact configuration test. Wear of the untreated 316L was sever and characterized by strong adhesion, abrasion and oxidation mechanism, whilst wear of the DCPN-treated 316L was mild and dominated by plastic deformation, slight abrasion and frictional polishing.  相似文献   

12.
In this study, an ultrafine-grained surface layer with the average grain size of about 10 nm was fabricated on a stainless steel plate by surface mechanical attrition treatment (SMAT). Plasma nitriding of the samples was carried out by a low-frequency pulse-excited plasma unit. Optical microscopy, x-ray diffraction, scanning electron microscopy, transmission electron microscopy, micro-indentation, and pin-on-disk wear and corrosion experiments were performed for characterization before and after plasma nitriding. It is found that the pre-SMATed sample developed a nitrided layer twice as thick as that on the as-received sample under the same nitriding conditions (300 °C for 4 h), which can be mainly attributed to the fast diffusion of nitrogen along grain boundaries in the nanostructured layer induced by means of SMAT. Results showed that nitriding layers of the as-received and pre-SMATed samples up to 300 °C are dominated by S-phase (γN), but its peak intensity for the pre-SMATed sample is sharper than that of the as-received one. During 500 °C nitriding treatment, the nitrogen would react with Cr in the steel to form CrN precipitates, which would lead to the depletion of chromium in the solid solution phase of the nitrided layer. Furthermore, the nitrided layer of the pre-SMATed sample exhibited a high hardness, and an excellent wear and corrosion resistance.  相似文献   

13.
Plasma-based low-energy nitrogen ion implantation, including plasma source ion nitriding/carburizing and plasma source low-energy ion enhanced deposition, has emerged as a low-temperature surface engineering technique for metal and alloy. In this paper, the pure metal Ti samples have been modified by the plasma source ion nitriding process at a process temperature of 700 °C for a processing time of 4 h. The nitrided Ti surfaces were constructed of a continuous and dense Ti2N compound layer about 2 μm thick and a 7-8 μm diffused layer. During tribological test on a ball on disk tribometer against the Si3N4 ceramic counterface, a low friction coefficient of about 0.3 and the faint wear volume were obtained for the nitrided Ti samples. The cyclic polarization curves of the nitrided Ti samples in 3.5% and 6.0% NaCl solutions showed that the improved pitting corrosion resistance with an increase of corrosion potential and a decrease of passive current, compared with that of the unnitrided Ti sample. The plasma source ion nitriding of the Ti samples provided the engineering surfaces for the functional applications with the combined improvement in wear and corrosion resistance.  相似文献   

14.
Plasma nitriding over a wide range of treatment temperatures between 350 and 500 °C and time from 5 to 30 h on A286 austenitic precipitation-hardening stainless steels has been investigated. Systematic materials characterisation of the plasma surface alloyed A286 alloy was carried out in terms of microstructure observations, phase identification, chemical composition depth profiling, surface and cross-section microhardness measurements, electrochemical corrosion tests, dry sliding wear tests and corrosion-wear tests. Experimental results have shown that plasma nitriding can significantly improve the hardness and wear resistance of A286 stainless steels owing to the formation of nitrogen supersaturated S-phase; the surface layer characteristics (e.g. microstructure, case depth and hardness) of the plasma surface alloyed cases are highly process condition dependent and there are possibilities to provide considerable improvement in wear, corrosion and corrosion-wear resistance of A286 steel.  相似文献   

15.
38CrMoAlA、40Cr钢经不同渗氮工艺处理后的性能研究   总被引:3,自引:2,他引:3  
研究了38CrMoAlA和40Cr钢经气体渗氮、气体氮碳共渗、离子渗氮处理后渗氮层的组织、硬度、摩擦磨损和腐蚀性能。试验结果表明,38CrMoAlA钢渗氮层的硬度及在3.5%NaCl溶液中的耐蚀性能高于40Cr钢,但抗摩擦磨损性能不如40Cr钢。依气体渗氮、气体氮碳共渗到离子渗氮的顺序,渗氮层的抗磨损性能逐次提高,但抗腐蚀能力逐次降低。从钢的化学成分、渗氮层的硬度和韧性出发,对38CrMoAlA和40Cr钢渗氮层的性能差异进行了分析与总结。  相似文献   

16.
A 2Cr13 steel was gas nitrided in pure NH3 gas atmosphere at 793 K for 20 h. The microstructure, composition and microhardness of the nitrided samples were examined. The tribological behaviour of the nitrided 2Cr13 steel in air and vacuum was investigated in order to analyse effects of the nitriding on wear resistance of the 2Cr13 steel. The results show that the nitrided layer consists of a compound layer and diffusion zone. The nitriding increases both the surface hardness and wear resistance of 2Cr13 steel in air and vacuum, and the anti-wear characteristic of the nitrided 2Cr13 steel in vacuum is much higher than that in air. The nitrided layer exhibits a mild wear in air, and avoids the severe wear that happens on the unnitrided steel. While the adhesion dominates the wear process in vacuum. The material transfer between the wear couples helps to improve the tribological characteristics of the nitrided layer in vacuum.  相似文献   

17.
Plasma nitriding is a widely used technique for increasing the surface hardness of stainless steels, and consequently, for improving their tribological properties. It is also used to create an interface between soft stainless steel substrates and hard coatings to improve adhesion. This paper reports on the mechanical and corrosion properties of AISI301 stainless steel (SS) after a duplex treatment consisting of plasma nitriding followed by deposition of Cr bond coat and CrSiN top layer by magnetron sputtering. Mechanical properties of the deposited films, such as hardness (H) and reduced Young's modulus (Er), were measured using depth-sensing indentation. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were carried out to evaluate resistance to localized and to general corrosion, respectively. The corrosion behavior has been correlated with the microstructure and composition of the surface layers, determined by complementary characterization techniques, including XRD, SEM, and EDS. The CrSiN layers exhibited an H value of 24 GPa, whereas the nitrided layer was shown to present a gradual increase of H from 5 GPa (in the nitrogen-free SS matrix) to almost 14 GPa at the surface. The electrochemical measurements showed that the nitriding temperature is a critical parameter for defining the corrosion properties of the duplex-treated SS. At a relatively high temperature (723 K), the nitrided layer exhibited poor corrosion resistance due to the precipitation of chromium nitride compounds and the depletion of Cr in the iron matrix. This, in turn, leads to poor corrosion performance of the duplex-treated SS since pores and defects in the CrSiN film were potential sites for pitting. At relatively low nitriding temperature (573 K), the nitrided interface exhibited excellent corrosion resistance due to the formation of a compound-free diffusion layer. This is found to favor passivation of the material at the electrode/electrolyte interface of the duplex-treated SS.  相似文献   

18.
Liquid nitriding of type 321 austenite stainless steel was conducted at low temperature at 430 °C, using a type of a complex chemical heat-treatment; and the properties of the nitrided surface were evaluated. Experimental results revealed that a modified layer was formed on the surface with the thickness ranging from 2 to 30 μm varying with changing treatment time. When the stainless steel subjected to the advanced liquid nitriding less than 8 h at 430 °C, the main phase of the nitrided coating layer was the S phase generally. When the treatment time prolonged up to 16 h, S phase formed and partially transformed to CrN subsequently; and then the fine secondary CrN phase precipitated. All treatments performed in the current study can effectively improve the surface hardness. The nitrided layer thickness changed intensively with the increasing nitrided time. The growth of the nitride layer took place mainly by nitrogen diffusion according to the expected parabolic rate law. The highest hardness value obtained in this experiment was about 1400 Hv0.25. Low-temperature nitriding can improve the corrosion resistance of the 321 stainless steel against diluted vitriolic acid. The immerse test results revealed that the sample nitrided for 16 h had the best corrosion resistance than the others. SEM examinations indicated that after nitriding, the corrosion mechanisms of the steel had changed from serious general corrosion of untreated sample to selectivity corrosion of nitrided samples in the diluted vitriolic acid.  相似文献   

19.
The aim of the study is to apply a plasma nitriding process to the 90CrMoV8 steel commonly employed in wood machining, and to determine its efficiency to improve both mechanical and electrochemical properties of the surface. Treatments were performed at a constant N2:H2 gas mixture and by varying the temperature and process duration. The structural and morphological properties of nitrided layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with EDS microanalyses. Surface hardening and hardness profiles were evaluated by micro hardness measurements. To simulate the wood machining conditions, electrochemical tests were carried out with an oak wood electrolyte with the purpose of understanding the effects of the nitriding treatment on the corrosion resistance of the tool in operation.X-ray diffraction analyses revealed the presence of both γ′ (Fe4N) and ε (Fe2-3N) nitrides with a predominance of the ε phase. Moreover, α-Fe (110), γ′ and ε diffraction peaks were shifted to lower angles suggesting the development of compressive stresses in the post nitrided steel. As a result, it was shown that nitriding allowed a significant hardening of steel with hardness values higher than 1200 HV. The diffusion layers were always composed of an outer compound layer and a hardened bulk layer which thickness was half of the total diffusion layer one. No white layer was observed. Similarly, no traces of chromium nitrides were detected. The temperature seemed to be a parameter more influent than the process duration on the morphological properties of the nitrided layer, while it had no real influence on their crystallinity. Finally, the optimal nitriding conditions to obtain a thick and hard diffusion layer are 500 °C for 10 h.On the other hand, to verify the effect of these parameters on the corrosion resistance, potentiodynamic polarization tests were carried out in an original “wood juice” electrolyte. After corrosion, surface was then observed at the SEM scale. Electrochemical study indicated that the untreated steel behaved as a passive material. Although the very noble character of steel was somewhat mitigated and the corrosion propensity increased for nitrided steels, the passive-like nature of the modified surface was preserved. For the same optimized parameters as those deduced from the mechanical characterization (500 °C, 10 h), surface presented, in addition to a huge surface hardening, a high corrosion resistance.  相似文献   

20.
Traditional plasma ion immersion implantation (PIII) can effectively improve material mechanical property and corrosion resistance. But the modified layer by PIII is too thin for many industrial applications. High frequency and low voltage plasma immersion ion implantation (HLPIII) has advantages of PIII and nitriding. Comparing with traditional ion nitriding, HLPIII can obtain higher implantation energy and create a thick modified surface layer. In the present paper nitriding layers were synthesized on industrial pure iron using high frequency and low voltage plasma immersion ion implantation with different RF power (400 W, 600 W, and 800 W). The microstructure of the nitriding layers was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties such as microhardness and wear resistance were analyzed using HXD1000 microhardness and CSEM pin-on-disk wear testing machine. The anodic polarization characteristics were measured in a 0.9% NaCl solution at room temperature to examine the corrosion resistance of the nitriding layer. The results reveal that Fe2N, Fe3N and Fe4N coexist in the nitriding layer. The nitriding layer is a corrosion protective coating on industrial pure iron in 0.9% NaCl solution. The hardness, wear resistance and corrosion resistance of the nitrided layers on industrial pure iron increase with RF power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号