首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
A novel modular experimental apparatus was designed and developed to measure and visualize fretting wear and friction for Hertzian circular and elliptical contacts and flat on flat contacts. The experimental apparatus utilizes a magnetostrictive actuator to reciprocate a flat, ball, or cylinder between two fixed specimens. Two stationary flat or cylindrical specimens mounted on a rotary table clamp the reciprocating specimen from the top and bottom to generate the fretting contact. The two stationary test specimens installed on the rotary table perpendicular to the moving specimen form a crossed cylinder geometry which creates a well-defined circular contact. An elliptical contact with different aspect ratios can be obtained by varying the angle between the fixed and the moving specimens. Dead weights placed on top of the upper stationary specimen provide the normal load. A force sensor located in line between the actuator output shaft and the specimen is used to measure friction. The test rig's modular design allows it to be configured for Hertzian circular (ball-on-flat, crossed cylinder), elliptical (crossed cylinder), and conformal (flat-on-flat) contacts. In the ball on flat configuration a steel flat or sapphire window is used in contact with the reciprocating ball. When the sapphire window is used a microscope and high speed camera is employed for in situ visualization and recording of the contact.  相似文献   

2.
Kyungmok Kim  Jean Geringer 《Wear》2012,274(1-2):497-503
This paper analyses energy dissipation of fretting corrosion in total hip prosthesis. Fretting corrosion is arisen between metallic prosthesis and bone and/or bone cement, leading to aseptic loosening. In this study, fretting corrosion tests are conducted in Ringer's solution. Stainless steel (316L) and poly (methyl methacrylate) are used for total hip prosthesis. Various potentials are applied in fretting corrosion tests and then dissipated energy is determined with number of cycles. Results show that dissipated energy is rapidly accumulated during the initial running-in period and accumulation of dissipated energy change can be expressed with a power-law form. After the initial running-in period, dissipated energy is linearly accumulated with respect to number of cycles. It is identified that a parameter in the power-law relation can describe the influence of applied potentials in fretting corrosion. In addition, the parameter shows relation to wear volume measured in stainless steel.  相似文献   

3.
4.
The fretting phenomenon was investigated experimentally in contacts between coated and uncoated steel rod and ball specimens generating a circular Hertzian contact. A fretting wear test rig equipped with a video camera was used to observe the effects of fretting on coated steel surfaces in both grease-lubricated and unlubricated environments. Tungsten carbide reinforced amorphous hydrocarbon (WC/a-C:H) and chromium nitride (Cr2N) coatings were tested and compared. Fretting wear volumes and surface profiles are presented for both grease-lubricated and unlubricated conditions. Videos of a coated ball fretting against a transparent sapphire flat were recorded and screen captures are presented. The role of normal load, lubrication, frequency, and amplitude of motion on the fretting wear of coatings is discussed. The lubricant released from the grease was observed to flow through channels in the stick zone of the fretting contacts. Both coatings were found to reduce fretting wear. WC/a-C:H was more effective at reducing wear under unlubricated conditions. WC/a-C:H decreased fretting wear more than Cr2N when delamination was avoided in grease-lubricated contacts.  相似文献   

5.
This study focuses on the influence of load and temperature on the formation and stability of tribo-films for bearing steel on bearing steel contacts lubricated with an aviation oil, EXXON Turbo 2380 (TCP based - tricresyl phosphate) at ambient temperatures. Experiments were carried out on a pin-on-disc (POD) tribometer (with a ball-on-flat geometry) under an average loading rate of 0.17 N s−1 and sliding speed of 3 m s−1. The X-ray photoelectron spectroscopy (XPS) analysis on the worn surfaces of ball and disc shows that a tribo-film forms on both surfaces at room temperature. The formation and removal of the tribo-film are faster on the ball due to the nature of contact between the ball and disc. It was found that the tribo-films formed at room temperature are vulnerable to initial disc temperature. The higher the initial temperature the higher the load carrying capacity. The tribo-film growth and contact deterioration have been monitored by acoustic emission (AE) and electrostatic charge (ESP) sensing systems in real time. The results show that both AE and ESP can detect the tribo-film and contact breakdown and have great potential for on-line condition monitoring of lubricated tribo-contacts.  相似文献   

6.
A test rig called a Ball Bearing Simulator (BBS) was developed to investigate the causes of failure of a specific gyro spin-axis bearing. However, its construction is such that it can be readily adapted to the study of other similar applications ands “lubrication failures” in general.

The device is basically a three-ball thrust bearing with flat disc races. One race is motor driven and the other is restrained from turning by a torque indicating system. The balls are constrained by a third disc supported in miniature bearings. Bushings of any desired cage material are pressed into three equispaced holes in the cage disc.

This arrangement makes it possible to simulate many parameters of ball bearing performance while the simple shapes and flat surfaces permit economical replacement of test parts of many materials and finishes using only simple tools.

Initial experiments are described in which qualitative correlation has been established between BBS life and the bench test life of several products with a number of lubricants.  相似文献   

7.
An experimental study torsional fretting behaviors of LZ50 steel   总被引:1,自引:0,他引:1  
Four simple fretting modes are defined according to relative motion: tangential, radial, rotational, and torsional fretting. This paper presents a new test rig that was developed from a low-speed reciprocating rotary system to show torsional fretting wear under ball-on-flat contact. Torsional fretting behavior was investigated for LZ50 steel flats against AISI52100 steel balls under various angular displacement amplitudes and normal loads. The friction torques and dissipation energy were analyzed in detail. Two types of Tθ curves in the shape of quasi-parallelograms and ellipticals were found that correspond to gross and partial slips, respectively. The experimental results showed that the dynamic behavior and damage processes depend strongly on the normal loads, angular displacement amplitudes, and cycles. In this paper, the debris and oxidation behaviors and detachment of particles in partial and gross slip regimes are also discussed. Debris and oxidation are shown to have important roles during the torsional fretting processes. The wear mechanism of torsional fretting was a combination of abrasive and oxidative wear and delamination before third-body bed formation. The mechanism was then transformed into third-body wear after a great amount of debris formed.  相似文献   

8.
A new test apparatus has been developed for radial fretting test. Main experimental conditions are as follows: the amplitude of normal load from 200 to 800N, the number of cycles from 1 to 3×105 cycles. Three contact pairs (a 52100 ball against 52100, 1045, 1045 steel with TiN coating) were used for the test. Variations of normal load vs indentation depth between two contact surfaces have been analyzed as a function of cycles. Contact degradation was examined through metallographic expertise on the flat specimen and radial fretting behaviour was compared in the paper.  相似文献   

9.
The squeeze film formation ability of traction fluids is studied under impact load by dropping a steel ball‐bearing against a flat anvil made of mild steel. The effect of the pressure–viscosity coefficient and of the viscosity is investigated for plastic impact. The depth difference between the lubricated surface dent and the dry dent increases linearly with the product αη of the pressure–viscosity coefficient α and the viscosity η. The importance of the lubricant parameter αη is observed under the squeeze film formation ability from contact voltage or elastohydrodynamic lubrication central film thickness measurement at rolling condition. The intensity of each impact collision is measured by means of an acoustic emission (AE) sensor. The high‐pressure short‐time solidification of traction fluids was confirmed by dent analysis after the impact tests and AE analysis under impact loads. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
An apparatus for composite fretting tests on a steel ball opposite to the inclined steel flat with different inclined angles (60° and 45°) have been carried out. During the tests, the maximum imposed loads were varied from 200 N to 400 N and 800 N at a constant loading speed of 12 mm/min. Dynamic analysis in combination with microscopic examinations through optical microscopy, profilometery, and SEM have been performed. Composite fretting behaviour has been analyzed and compared with the conventional fretting.  相似文献   

11.
A study was conducted to determine the effect of amplitude and test time on surface damage in metal-to-metal contact under lubricated conditions. The test set up consisted of a ball loaded against a flat disc, with an external drive imparting a linear oscillatory motion to the ball on the flat. The materials were steel AISI 52100/AISI 52100, and the lubricant was ISO VG 220. Damage characteristics were defined for amplitudes in the range of 5 to 50 microns and for test times of 10 to 360 min.  相似文献   

12.
Many tribosystems are subjected to different conditions with respect to temperature and humidity. Reciprocating sliding tests with steel/steel couples were performed using a laboratory test rig in air with varying relative humidity and temperature. During each test the friction force, the total linear wear, the electrical contact resistance, and the acoustic emission were recorded. Tests with self‐mated couples of bearing steel (100r6) and of stainless steel (X10CrNiMoNb18‐10/X5CrNi18‐9) in a ball‐on‐disc arrangement revealed small effects of temperature and humidity on friction, but a strong effect of the water vapour content on the wear rate of the system. Attempts were made to correlate changes of wear behaviour with different wear mechanisms.  相似文献   

13.
Fretting wear is often found at the contact surfaces of a tight assembly where small‐amplitude oscillatory movement occurs, which can be the concealed origin of some enormous accidents. Employment of solid lubrication coatings, as one of effective measurements to palliate the fretting damage, has been widely acknowledged. The present work studied the fretting behaviour of a molybdenum disulphide coating on SUS 316 stainless steel substrate by a relatively cheap and easy‐to‐use process: pressure spraying. Two contact configurations (cylinder‐on‐flat and ball‐on‐flat) were used in the tests with different displacement amplitudes (from 5 to 75 µm) and normal loads (from 100 to 400 N for ball‐on‐flat and from 400 to 1000 N for cylinder‐on‐flat). The results showed that large displacement amplitude is adverse to friction coefficient and coating lifetime and that under a critical contact pressure, coating endurance is improved contact pressure increases. Contact configuration influences friction coefficient by changing contact area and distribution of contact pressure. One master curve of average dissipated energy per cycle in initial stable stage was obtained for two contact configurations, which can be employed to approximately predict coating lifetime. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Fretting damage to a glass surface in contact with a steel ball was investigated. In the initial stage of fretting, severe wear occurred on the steel ball and considerable wear debris was transferred to the glass surface. The coefficient of friction increased during this stage by 80%. Fatigue cracks were observed on the glass surface under conditions of high normal load and tangential force. The mechanism of fretting fatigue and fretting wear is discussed in relation to a brittle material. Finally the effect of thin metal foil inserts in reducing fretting damage is described.  相似文献   

15.
B. Basu  J. Vleugels  O. Van Der Biest 《Wear》2001,250(1-12):631-641
Lubricated fretting tests in water and paraffin oil were performed with a monolithic TiB2, a TiB2-based cermet with 16 vol.% Ni3(Al, Ti) binder, a sialon–TiB2 (60/40) composite and a ZrO2–TiB2 (70/30) composite against ball bearing grade steel. Based on the measured friction and wear data, the ranking of the investigated fretting couples was evaluated. Furthermore, the morphological investigations of the worn surfaces and transfer layers are carried out and the wear mechanisms for the investigated friction couples are elucidated. While fretting in water, experiments revealed that tribochemical reactions, coupled with mild abrasion, played a major role in the wear behavior of the studied material combinations. ZrO2–TiB2 (70/30)/steel wear couple has been found to have the highest fretting wear resistance among the different tribocouples under water lubrication. Under oil lubrication, extensive cracking of the paraffin oil at the fretting contacts, caused by tribodegradation, leads to the deposition of a carbon-rich lubricating layer, which significantly reduced friction and wear of all the investigated tribosystems.  相似文献   

16.
Mo离子注入提高TC4合金微动磨损抗力的研究   总被引:1,自引:0,他引:1  
对TC4合金进行了Mo离子注入表面改性处理,利用摩擦磨损试验机进行了点接触微动磨损试验,借助读数显微镜和表面粗糙度仪测量出有关参数,计算出试样的微动磨损体积。结果表明,Mo离子注入使试样表面硬度提高,微动磨损体积明显降低。在微动磨损初期,Mo离子注入具有较好的减摩效果。Mo离子注入带来的表面强化效应是基体合金的微动磨损抗力得以提高的主要原因。  相似文献   

17.
The fretting wear behaviour of bearing steel against bearing steel, silicon nitride against silicon nitride, and silicon nitride against bearing steel, was investigated under lubricated and dry conditions. Amplitudes in the intermediate 5 to 50 μm range, and test durations from 10 to 360 min, were studied. Light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were employed to determine the detailed nature of the friction and wear processes. In the silicon nitride against silicon nitride contact, brittle fracture of Si3N4 grains, and tribochemical reaction creating an amorphous layer on the mechanically damaged surface, were found. The main mechanism of fretting wear in the case of bearing steel against bearing steel contact was delamination. In the silicon nitride against bearing steel contact, chemical reactions predominated.  相似文献   

18.
恒定动能作用下薄壁管的冲击微动磨损行为研究   总被引:4,自引:0,他引:4  
在新型冲击微动磨损试验机上对四种常见材料的薄壁管(不锈钢、铜合金、纯钛和铝合金)进行了冲击磨损试验,考察了材料属性、冲击能量对薄壁管损伤行为的影响。对其冲击动力学行为、磨损行为进行了分析。研究结果表明,不同材料金属管的能量吸收率、冲击接触力和冲击管变形有显著差异;同一种材料,随着初始冲击动能的增大,冲击过程中接触力、冲击管变形和冲击吸收能也在增大。通过分析磨痕微观形貌和磨痕轮廓,发现薄壁管的冲击磨损抵抗性能与材料属性密切相关;随着初始冲击动能的增加,材料损伤加剧,其损伤机制为疲劳磨损。  相似文献   

19.
An investigation was conducted to determine the effect of frequency and amplitude of axial vibration and of bearing axial play in producing fretting damage in unlubricated ball bearings at constant temperature and humidity. A study was also made of the impact forces occurring within the bearings due to these vibrations. A simplified analog simulation model of the ball bearing and the vibration exciter system was also developed.

Frequency, amplitude, time, and a derived parameter GxI (the product of acceleration and impact frequency) had a very significant influence on fretting damage, indicated statistically at a confidence level of ninety-nine percent. Although axial play had little effect on fretting damage for the range of axial plays of the test bearings, it had significant effect on the acceleration levels obtained within the bearings. Fretting damage was measured with a bearing torque analyzer. The experimental test vibrations were accurately reproduced on the analog model.  相似文献   

20.
A change in design of a ball bearing is described based on the results of numerical and experimental analysis to reduce fretting wear. Increasing the radii of curvature of the inner and outer races by a small amount reduces the product of the relative slip δ and the tangential traction τ at the contact region, both of which are caused by Heathcote slip. This results in the consequent reduction in fretting wear because there is a good correlation between the amount of fretting wear and τδ. This prediction is confirmed experimentally by increasing the groove radius of the inner race from 4.02 to 4.21 mm for a ball of radius 3.97 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号