首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the effect of ytrria stabilized zirconia (YSZ) dispersion on hot corrosion behaviour of NiCrAlY bond coat. Hot corrosion studies were conducted on NiCrAlY and NiCrAlY containing 25, 50 and 75 wt.% YSZ coatings obtained through the air plasma spray technique, in Na2SO4 + 10 wt.% NaCl environment at 800 °C. The results show that YSZ dispersion lowers the overall hot corrosion tendency of the NiCrAlY, though it enhances the inherent hot corrosion tendency of its metallic constituent (NiCrAlY). Furthermore, there exists a threshold oxide level beyond which it adversely affects the hot corrosion of the coating.  相似文献   

2.
Hot corrosion studies of thermal barrier coatings (TBCs) with different YSZ/LaMgAl11O19 (LaMA) composite coating top coats were conducted in 50 wt.% Na2SO4 + 50 wt.% V2O5 molten salt at 950 °C for 60 h. Results indicate that TBCs with composite coating top coats exhibit superior oxidation and hot corrosion resistances to the TBC with the traditional YSZ top coat, especially for which has a LaMA overlay. The presence of LaMA can effectively restrain the destabilization of YSZ at the expense of its own partial degradation. The hot corrosion mechanism of LaMA coating and the composite coatings have been explored.  相似文献   

3.
Air plasma sprayed TBCs usually include lamellar structure with high interconnected porosities which transfer oxygen from YSZ layer towards bond coat and cause TGO growth and internal oxidation of bond coat.The growth of thermally grown oxide (TGO) at the interface of bond coat and ceramic layer and internal oxidation of bond coat are considered as the main destructive factors in thermal barrier coatings.Oxidation phenomena of two types of plasma sprayed TBC were evaluated: (a) usual YSZ (yttria stabilized zirconia), (b) layer composite of (YSZ/Al2O3) which Al2O3 is as a top coat over YSZ coating. Oxidation tests were carried out on these coatings at 1100°C for 22, 42 and 100h. Microstructure studies by SEM demonstrated the growth of TGO underneath usual YSZ coating is higher than for YSZ/Al2O3 coating. Also cracking was observed in usual YSZ coating at the YSZ/bond coat interface. In addition severe internal oxidation of the bond coat occurred for usual YSZ coating and micro-XRD analysis revealed the formation of the oxides such as NiCr2O4, NiCrO3 and NiCrO4 which are accompanied with rapid volume increase, but internal oxidation of the bond coat for YSZ/Al2O3 coating was lower and the mentioned oxides were not detected.  相似文献   

4.
Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ7C3 coating, and even longer than that of the single layer YSZ coating. The superior sintering-resistance of LZ7C3 coating, the similar thermal expansion behaviors of YSZ interlayer with LZ7C3 coating and thermally grown oxide (TGO) layer, and the unique growth modes of columns within DCL coating are all very helpful to the prolongation of thermal cycling life of DCL coating. The failure of DCL coating is mainly a result of the reduction-oxidation of cerium oxide, the crack initiation, propagation and extension, the abnormal oxidation of bond coat, the degradation of t′-phase in YSZ coating and the outward diffusion of Cr alloying element into LZ7C3 coating.  相似文献   

5.
Polycrystalline Ti3SiC2 suffered from serious hot corrosion attack in the mixture of 75wt.%Na2SO4 + 25wt.%NaCl melts at 850 °C. In order to improve the hot corrosion resistance of this material, pre-oxidation treatment was conducted at 1200 °C in air for 2 h. A duplex oxide scale with an outer layer of TiO2 and an inner layer of a mixture of TiO2 and SiO2 was formed during the pre-oxidation. Because the outer oxide layer of the pre-oxidation treated specimens could inhibit hot corrosion process, they exhibited good hot corrosion resistance in the mixture of 75wt.%Na2SO4 + 25wt.%NaCl melts at 850 °C for 50 h. However, during the hot corrosion the outer layer of TiO2 would degrade gradually. Once the outer layer damaged, the hot corrosion rate increased sharply, the corrosion behavior was similar to Ti3SiC2 corroded under the same conditions. The microstructure and phase compositions of the hot corrosion samples were investigated by SEM/EDS and XRD.  相似文献   

6.
A new type of Pt + Hf-modified γ′-Ni3Al + γ-Ni-based coating has been developed in which deposition involves Pt electroplating followed by combined aluminizing and hafnizing using a pack cementation process. Cyclic oxidation testing of both Pt + Hf-modified γ′ + γ and Pt-modified β-NiAl coatings at 1150 °C (2102 °F), in air, resulted in the formation of a continuous and adherent α-Al2O3 scale; however, the latter developed unwanted surface undulations after thermal cycling. Type I (i.e. 900 °C/1652 °F) and Type II (i.e. 705 °C/1300 °F) hot corrosion behavior of the Pt + Hf-modified γ′ + γ coating were studied and compared to Pt-modified β and γ + β-CoCrAlY coatings. Both types of hot corrosion conditions were simulated by depositing Na2SO4 salt on the coated samples and then exposing the samples to a laboratory-based furnace rig. It was found that the Pt + Hf-modified γ′ + γ and Pt-modified β coatings exhibited superior Type II hot corrosion resistance compared to the γ + β-CoCrAlY coating; while the Pt + Hf-modified γ′ + γ and γ + β-CoCrAlY coatings showed improved Type I hot corrosion performance than the Pt-modified β.  相似文献   

7.
A novel electroplating method has been developed to produce nanocrystalline metal-matrix nano-structured composite coatings. A small amount of transparent TiO2 sol was added into the traditional electroplating Ni solution, leading to the formation of nanocrystalline Ni-TiO2 composite coatings. These coatings have a smooth surface. The Ni nodules changed from traditional pyramid-like shape to spherical shape. The grain size of Ni was also significantly reduced to the level of 50 nm. It was found that the amorphous anatase TiO2 nano-particles (∼ 10 nm) were highly dispersed in the coating matrix. The microhardness was significantly increased from 320 HV100 of the traditional Ni coating to 430 HV100 of the novel composite coating with 3.26 wt.% TiO2. Correspondingly, the wear resistance of the composite coating was improved by ∼ 50%.  相似文献   

8.
In the present investigation, Cr3C2-NiCr cermet coatings were deposited on two Ni-based superalloys, namely superni 75, superni 718 and one Fe-based superalloy superfer 800H by detonation-gun thermal spray process. The cyclic hot-corrosion studies were conducted on uncoated as well as D-gun coated superalloys in the presence of mixture of 75 wt.% Na2SO4 + 25 wt.% K2SO4 film at 900 °C for 100 cycles. Thermogravimetric technique was used to establish the kinetics of hot corrosion of uncoated and coated superalloys. X-ray diffraction, FE-SEM/EDAX and X-ray mapping techniques were used to analyze the corrosion products for rendering an insight into the corrosion mechanisms. It was observed that Cr3C2-NiCr-coated superalloys showed better hot-corrosion resistance than the uncoated superalloys in the presence of 75 wt.% Na2SO4 + 25 wt.% K2SO4 film as a result of the formation of continuous and protective oxides of chromium, nickel and their spinel, as evident from the XRD analysis.  相似文献   

9.
Aluminum coating was plasma sprayed on Fe-0.14-0.22 wt.% C steel substrate, and heat diffusion treatment at 923 °C for 4 h was preformed to the aluminum coating to form Fe2Al5 inter-metallic compound coating. The corrosion mechanism of the Fe2Al5 coating in molten zinc was investigated. SEM and EDS analysis results show that the corrosion process of the Fe2Al5 layer in molten zinc is as follows: Fe2Al5 → Fe2Al5Znx (η) → η + L(liquid phase) → L + η + δ(FeZn7) → L + δ → L. The η phase and the eutectic structure (η + δ) prevent the diffusion of zinc atoms efficiently. Therefore the Fe2Al5 coating delays the reaction between the substrate and molten zinc, promoting the corrosion resistance of the substrate.  相似文献   

10.
Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer (DCL) systems, which were deposited by electron beam physical vapor deposition (EB-PVD), were found to have a longer lifetime compared to the single layer La2Ce2O7 (LC) system, and even much longer than that of the single layer 8YSZ system under burner rig test. The DCL coating structure design can effectively alleviate the thermal expansion mismatch between LC coating and bond coat, as well as avoid the chemical reaction between LC and Al2O3 in thermally grown oxide (TGO), which occurs above 1000 °C as determined by differential scanning calorimetry (DSC) analysis. The failure mechanism of LC/8YSZ DCL coating is mainly due to the sintering of LC coating surface after long-term thermal cycling.  相似文献   

11.
Hot corrosion studies were performed on superalloy specimens. The IN713LC superalloy were sprayed with an aluminized NiCrAlY-bond coat and then with an yttria-zirconia top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scales by the rapid scale growth and thermal stress. The top coatings showed a much better hot corrosion resistance in the presence of LiCl-3 wt.% Li2O molten salt when compared with those of the bare superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing hot corrosion resistance of structural materials for lithium molten salts.  相似文献   

12.
In the present investigation electroless ternary NiWP-Al2O3 composite coatings were prepared using an electroless nickel bath. Second phase alumina particles (1 µm) were used to codeposit in the NiWP matrix. Nanocrystalline ternary NiWP alloys and composite coatings were obtained using an alkaline citrate based bath which was operated at pH 9 and temperature at 88 ± 2 °C. Mild steel was used as a substrate material and deposition was carried out for about 4 h to get a coating thickness of 25 ± 3 µm. Metallographic cross-sections were prepared to find out the coating thickness and also the uniform distribution of the aluminum oxide particles in NiWP matrix. Surface analysis carried out on both the coatings using scanning electron microscope (SEM) showed that particle incorporation in ternary NiWP matrix has increased the nodularity of composite coatings compared to fine nodular NiWP deposits. Elemental analysis of energy dispersive X-ray (EDX) results showed that codeposited P and W elements in plain NiWP deposit were 13 and 1.2 wt.%, respectively. There was a decrease in P content from 13 to 10 wt.% with a marginal variation in the incorporated W (1.01 wt.%) due to the codeposition of aluminum oxide particles in NiWP matrix. X-ray diffraction (XRD) studies carried out on as-plated deposits showed that both the deposits are X-ray amorphous with a grain size of around 3 nm. Phase transformation studies carried out on both the coatings showed that composite coatings exhibited better thermal stability compared to plain NiWP deposits. From the XRD studies it was found that metastable phases such as NiP and Ni5P2 present in the composite coatings heat treated at major exothermic peak temperature. Annealed composite coatings at various temperatures revealed higher microhardness values compared to plain NiWP deposits.  相似文献   

13.
Novel YSZ (6 wt.% yttria partially stabilized zirconia)-(Al2O3/YAG) (alumina-yttrium aluminum garnet, Y3Al5O12) double-layer ceramic coatings were fabricated using the composite sol-gel and pressure filtration microwave sintering (PFMS) technologies. The thin Al2O3/YAG layer had good adherence with substrate and thick YSZ top layer, which presented the structure of micro-sized YAG particles embedded in nano-sized α-Al2O3 film. Cyclic oxidation tests at 1000 °C indicated that they possessed superior properties to resist oxidation of alloy and improve the spallation resistance. The thermal insulation capability tests at 1000 °C and 1100 °C indicate that the 250 μm coating had better thermal barrier effect than that of the 150 μm coating at different cooling gas rates. These beneficial effects should be mainly attributed to that, the oxidation rate of thermal grown oxides (TGO) scale is decreased by the “sealing effect” of α-Al2O3, the “reactive element effect”, and the reduced thermal stresses by means of nano/micro composite structure. This double-layer coating can be considered as a promising TBC.  相似文献   

14.
Composite WC/Co + MoS2 coatings were deposited onto steel substrates by Computer Controlled Detonation Spraying using three spraying modes: very cold, cold and normal. Maximal content of MoS2 in a sprayed powder was 10 wt.%. Characterization of coatings was made with chemical and phase analyses, microhardness measurement, morphology and microstructure investigation. X-ray diffraction study shows that residual MoS2 exists only in coatings obtained at very cold and cold spraying modes. At normal spraying mode complete decomposition of the solid lubricant occurs during spraying. From the engineering point of view, the coating applied at the cold mode using a powder containing 10 wt.% MoS2 is the most promising. Such a coating has microhardness of 650 HV0.2 and a porosity of 10%.  相似文献   

15.
Rare earth oxide (CeO2) has been incorporated in NiCrAlY alloy and hot corrosion resistance of detonation-gun-sprayed NiCrAlY + 0.4 wt.% CeO2 coatings on superalloys, namely, superni 75, superni 718, and superfer 800H in molten 40% Na2SO4-60% V2O5 salt environment were investigated at 900 °C for 100 cycles. The coatings exhibited characteristic splat globular dendritic structure with diameter similar to the original powder particles. The weight change technique was used to establish corrosion kinetics. X-ray diffraction (XRD), field emission scanning electron microscopy/energy-dispersive analysis (FE-SEM/EDAX), and x-ray mapping techniques were used to analyze the corrosion products. Coated superfer 800H alloy showed the highest corrosion resistance among the examined superalloys. CeO2 was found to be distributed in the coating along the splat boundaries, whereas Al streaks distributed non-uniformly. The main phases observed for the coated superalloys are oxides of Ni, Cr, Al, and spinels, which are suggested to be responsible for developing corrosion resistance.  相似文献   

16.
Y3Al5O12 and ZrO2-Y2O3 (8 mol% YSZ) coatings for potential application as thermal barrier coatings were prepared by combustion spray pyrolysis. Thermal cycling of as deposited coatings on stainless steel and FeCrAlY bond coat substrates was carried out at 1000 °C and 1200 °C to determine the thermal fatigue response. Structural and morphological studies on Y3Al5O12 and 8 mol% YSZ coatings before and after thermal cycling have been carried out. It has been noted that the coatings on FeCrAlY substrates remain intact after 50 cycles between room temperature and 1200 °C, whereas the coatings on stainless steel show some minor damage such as peeling off near the periphery after 50 cycles at 1000 °C. Thermal diffusivity values of Y3Al5O12 and 8 mol% YSZ films were measured by using photo thermal deflection spectroscopy and the values are lower than those of coatings produced by conventional techniques such as EBPVD and APS.  相似文献   

17.
In this paper, nano-SiO2 was used as an accelerator for improving the microstructure and the corrosion resistance of phosphate coating on carbon steel. The chemical composition and microstructure of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effects of nano-SiO2 on weight, roughness and corrosion resistance of the phosphate coatings were also investigated. Results show that the compositions of phosphate coating were Zn3(PO4)2·4H2O (hopeite), and Zn2Fe(PO4)2·4H2O (phosphophylite). The phosphate coatings became denser due to the addition of nano-SiO2 which reduced the size of the crystal clusters. The average weight of phosphate coatings approximately linearly increased with the nano-SiO2 content in the bath from 0 to 4 g/L, and the phosphate coatings formed in bath containing 2 g/L nano-SiO2 showed the highest corrosion resistance in 5 wt.% sodium chloride solution at ambient temperature. Nano-SiO2 would be widely utilized as a phosphating additive to replace the traditional nitrite, due to its less pollutant and its better quality of the coating.  相似文献   

18.
In this study, the adhesion strength of thermal barrier coatings 8YSZ (ZrO2 + 8 wt.% Y2O3) deposited on NiCrAlY bond coats by atmospheric plasma spraying is investigated experimentally. A modified four-point bending specimen that can generate a single interface crack to facilitate the control of crack growth was adopted for testing. The fracture surfaces were examined using a scanning electron microscope. Images show that cracks are initiated along YSZ/NiCrAlY interfaces, then kink and grow uniformly within the YSZ layer. The load-displacement curves obtained indicate three distinct stages in crack initiation and stable crack growth. Based on a microstructural model, finite element analyses were performed to extract the bonding strength of the thermal barrier coatings. The fracture toughness of the plasma-sprayed 8YSZ coatings, in terms of critical strain energy release rate Gc, can be reliably obtained from an analytical solution or from a numerical simulation of the cracking process using compliance methods.  相似文献   

19.
The present work investigates the hot corrosion resistance of detonation gun sprayed (D-gun) Cr3C2–NiCr coatings on Superni 75, Superni 718 and Superfer 800 H superalloys. The deposited coatings on these superalloy substrates exhibit nearly uniform, adherent and dense microstructure with porosity less than 0.8%. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of bare and Cr3C2–NiCr coated superalloys in molten salt environment (Na2SO4–60% V2O5) at high temperature 900 °C for 100 cycles. The corrosion products of the detonation gun sprayed Cr3C2–NiCr coatings on superalloys are analyzed by using XRD, SEM, and FE-SEM/EDAX to reveal their microstructural and compositional features for elucidating the corrosion mechanisms. It is shown that the Cr3C2–NiCr coatings on Ni- and Fe-based superalloy substrates are found to be very effective in decreasing the corrosion rate in the given molten salt environment at 900 °C. Particularly, the coating deposited on Superfer 800 H showed a better hot corrosion protection as compared to Superni 75 and Superni 718. The coatings serve as an effective diffusion barrier to preclude the diffusion of oxygen from the environment into the substrate superalloys. It is concluded that the hot corrosion resistance of the D-gun sprayed Cr3C2–NiCr coating is due to the formation of desirable microstructural features such as very low porosity, uniform fine grains, and the flat splat structures in the coating.  相似文献   

20.
Ni-P and Ni-P-Al2O3 amorphous alloy coatings with 9.3 and 8.3 wt.% P respectively were obtained by autocatalytic deposition at 90 °C on carbon steel substrates. The effect of annealing temperature (100, 200, 300, 400 and 500 °C) upon the corrosion parameters of the coatings in artificial seawater with pH 5.0 and 8.1 at room temperature was evaluated by potentiodynamic polarisation and electrochemical impedance spectroscopy. It was found that deposits annealed at 400 and 500 °C presented an increase of the charge transfer resistance and negligible changes on samples annealed at lower temperature. Polarisation tests showed a charge transfer controlled anodic kinetics on both Ni-P and Ni-P-Al2O3 deposits and diffusion controlled cathodic reaction in artificial seawater at pH 5.0 and 8.1. The coatings did not present passive behaviour in the electrolytes and impedance measurements showed a single time constant for all cases with the lowest double layer capacitance (Cdl) for samples annealed at 400 and 500 °C. The best corrosion parameters were observed on Ni-P and Ni-P-Al2O3 coatings annealed at temperatures higher than 400 °C, which is the temperature where crystallisation of this kind of coatings takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号