首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through micro-arc oxidation, the MgF2/ZrO2 composite coatings were prepared on magnesium at the different applied voltages (in the range of 400-550 V) in a zirconate electrolytic solution. The morphologies, phase components, microhardness, bond strengths, and corrosion resistances of the composite coatings were investigated. The effect of the applied voltages on the characteristics and properties of the composite coatings and the basic formation mechanism of the coatings were also discussed. The results indicate that the composite coatings are relatively dense and uniform in thickness, and predominantly composed of MgF2, tetragonal ZrO2 (t-ZrO2) and monoclinic ZrO2 (m-ZrO2). The composite coatings exhibit a gradient distribution in phase component from the surface to the inner part. It is found that the applied voltage plays an important role in the characteristics and properties of the composite coatings. With the increase of the applied voltage, the thickness and the t-ZrO2 content of the composite coatings increase, while the m-ZrO2 content decreases and no significant variation is observed in the MgF2 content. Moreover, the surface microhardness and bond strength of the coatings increases with the applied voltage increasing. The microhardness values display a gradient distribution in the cross sections of the coatings, and the maximum microhardness value and its corresponding position in the cross sections are related to the applied voltage. In addition, the corrosion resistances of the composite coatings on magnesium surface are obviously superior to the magnesium substrate in the NaCl solutions, and the effect is more remarkable at higher voltage.  相似文献   

2.
Composite plating was used to prepare Ni-W infused rare earth oxide CeO2 composite coatings. The high temperature friction behavior and corrosion resistance of the coatings against molten glass were investigated by using a high temperature tribometer. A microhardness tester and an environmental scanning electron microscope equipped energy dispersive spectroscopy were employed to investigate the microhardness and the surface morphology of the composite coatings respectively. The results show that the brittle fracture, high temperature tribological properties and the corrosion resistance of Ni-W infused CeO2 coatings are superior to those of a standard Ni-W coating. CeO2 particles decrease the friction coefficient from nearly 0.5 to about 0.25 during the composite coatings sliding against the molten glass at about 973 K, and proper quantities of CeO2 decrease the variation of the friction coefficient value. Furthermore, CeO2 can improve the corrosion resistance of the Ni-W coatings at high temperature effectively.  相似文献   

3.
The effect of V2O5 on the refinement of microstructures and the reduction of cracking susceptibility of laser-clad NiCrBSiC hardfacing coatings are investigated. It is shown that high volume fraction and inhomogeneous distribution of the coarse brittle phases of chromium borides and carbides in NiCrBSiC layer are the dominating origins for hot cracks. The addition of V2O5 has an apparent effect on enhancing the toughness, refining the microstructure and reducing the cracking sensitivity of the coating. This is attributed to the generation of vanadium borides and carbides. The vanadium borides generate prior to and consequently inhibit the formation of chromium borides during rapid solidification because of lower standard free energy of formation of the former. They also restrain the growth of chromium carbides and make them distribute homogeneously. The reasons for crack initiation and distribution are discussed based on the microstructures of the cladding layers. It is demonstrated that the generation of cracks is determined by the microstructure of the cladding layers and the occurrence of cracking is governed by heat stress.  相似文献   

4.
The effects of laser and plasma arc remelting on the microstructure and properties of plasma-sprayed NiCr-Cr3C2 coatings on steel substrates have been investigated. The microstructure of the coatings has been analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). It is found that the Cr3C2, δ-(Cr,Ni), Cr7C3 and Cr23C6 phases were obtained for both coatings, before and after remelting treatment. The laser remelting was operated in a continuous way with 800 W power in different scan speed, while the plasma arc remelting was operated with a plasma cladding machine under different scan currents. However, the denser microstructure of both remelted coatings can be obtained, especially for the plasma arc remelted coating. The Vickers microhardness measurement showed certain enhancement values for both remelted coatings. The corrosion behavior was evaluated through salt spray corrosion (SSC) method. Energy-dispersive spectroscopy (EDS) showed that the chloride was produced during SSC process. The higher corrosion resistance for plasma arc remelted coating may be due to the more compact microstructure, less porosity rate and tensile residual stress. Compared with laser remelting method, plasma arc remelting is a cheap, convenient and effective remelting method.  相似文献   

5.
ZrN/W2N multilayered coatings with nanoscale modulation period in an ultra-high vacuum rf magnetron sputter chamber. XRD, SEM, Nano Indenter and profiler were employed to investigate the influence of modulation periods and working pressures on structural and mechanical properties of the coatings. The low-angle XRD pattern and cross-sectional SEM indicated a well-defined composition modulation and layer structure of the multilayered coating. All multilayered coatings revealed higher hardness than the rule-of-mixtures value of monolithic ZrN and W2N coatings at different working pressures. The maximum hardness was up to 34 GPa. The multilayers obtained mixed polycrystalline textures of ZrN(111), W2N(111), W2N(200) and W2N(311). 0.8 Pa was an optimum working pressure for mechanical property enhancement.  相似文献   

6.
Al-containing hydrogenated amorphous carbon (Al-C:H) films were prepared using a magnetron sputtering Al target in the CH4 and Ar mixture atmosphere with various applied substrate pulse negative bias voltages. The hydrogen content and internal stress of the film decrease dramatically with the substrate pulse bias voltage increase. However, the hardness values of the films keep at high level (∼ 20 GPa) without any obvious changes with the increase of the applied substrate pulse bias voltages. The Al-C:H film prepared at applied substrate high bias voltage shows a long wear life and low friction coefficient.  相似文献   

7.
TiO2 layer was prepared as a protective coating for AZ31 magnesium alloy by the liquid phase deposition (LPD) method followed by an annealing treatment. The structural evolution and crystallization of coating brought by annealing were investigated by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), respectively. The corrosion protection performance was evaluated in a three-electrode electrochemical examination system. The anatase TiO2 layer shows evident corrosion resistance. With the increase of the annealing temperature and prolongation of annealing time, the anticorrosion property was improved. The improvements of the anticorrosion properties were related with the structural evolution of the coating brought by the annealing treatment.  相似文献   

8.
Hybrid sol-gel based nanocomposite coatings derived from hydrolysis and condensation of a photopolymerizable silane precursor 3-Glycidoxypropyltrimethoxy silane in combination with zirconium-n-propoxide were deposited on mild steel substrates by a dip coating technique. In some cases, substrates were subjected to an atmospheric air-plasma surface pre-treatment prior to coating deposition. The coatings were subsequently densified by exposure to ultraviolet radiation followed by a thermal treatment at 250 °C. Characterization of the coatings with respect to thickness, water contact angle, pencil scratch hardness, adhesion and abrasion resistance was carried out. Corrosion testing was carried out on the coatings for a 1 h exposure to a 3.5% NaCl solution by electrochemical polarization and impedance measurements. The hybrid sol-gel coatings were found to improve the mechanical properties and corrosion resistance of mild steel. Plasma surface pre-treatment was found to improve the adhesion of coatings significantly and decreased the corrosion rate from 0.2652 mpy obtained for coatings without any surface pre-treatment to 0.0015 mpy, which was nearly 600 times lower than that of bare mild steel.  相似文献   

9.
ZnO/Al2O3 coatings were prepared by atmospheric plasma spraying (APS) using ZnO powders and Al2O3 powders as starting materials. The dielectric properties of these coatings were discussed. Both the real part of permittivity and the energy loss increase greatly with increasing ZnO content over the frequency range 8.2-12.4 GHz, which can be ascribed to orientation polarization and relaxation polarization due to a higher ZnO content. The frequency-dependent maximum of the loss tangent is found to obey Debye theory. In addition, annealing temperature which leads to the change of ZnO content also plays an important role in the dielectric performance.  相似文献   

10.
The effect of Al2O3 additions to type 316 austenitic stainless steel cold spray coatings was studied. Adding Al2O3 to the feedstock powder increased the overall deposition efficiency, though the Al2O3 itself deposited less efficiently than the stainless steel. Shear testing of the coatings using a shear lug test revealed a change in fracture from cohesive to adhesive with increasing alumina addition. The corrosion behaviour, assessed using anodic polarisation tests of the coatings, showed a shift towards the polarisation behaviour of bulk stainless steel with Al2O3 additions. All of these changes in coating behaviour with Al2O3 additions suggest an improved degree of metallurgical bonding, likely due to increased plasticity in the stainless steel particles.  相似文献   

11.
TiO2 coatings were manufactured by the High Velocity Suspension Flame Spraying (HVSFS) technique using a nanopowder suspension. Their microstructure, nanohardness, tribological properties and photocatalytic activity were studied and compared to conventional atmospheric plasma sprayed (APS) and HVOF-sprayed TiO2 coatings manufactured using commercially available feedstock. The HVSFS process leaves a fairly large freedom to adjust coating properties (thickness, porosity, anatase content, hardness, etc…) according to the desired objective. Layers with higher anatase content and higher porosity can be produced to achieve higher photocatalytic efficiency, better than conventional APS and HVOF TiO2. Alternatively, dense protective layers can be deposited, possessing lower porosity and pore interconnectivity and better wear resistance than as-deposited APS and HVOF layers. In all cases, HVSFS-deposited layers are thinner (20 µm-60 µm) than those which can be obtained by conventional spraying processes.  相似文献   

12.
Ion-plated Al-Al2O3 cermet films were fabricated as diffusion barriers between NiCrAlY coating and orthhombic-Ti2AlNb alloy. The oxidation and interdiffusion behaviour of coatings with and without diffusion barrier were investigated in isothermal and cyclic oxidation tests at 800 °C. The results indicated that substantial interdiffusion and rapid oxidation degradation occurred in the coated specimens without diffusion barrier. With Al-Al2O3 diffusion barriers, deferred interdiffusion and improved oxidation resistance was observed. Among them, duplex coating containing 1Al-Al2O3 interlayer exhibited the best performance. Coefficient of diffusion hindering and factor of reaction hindering were proposed to compare and quantify the efficiency of the diffusion barriers.  相似文献   

13.
In situ magnetic annealing effects on c-axis-preferred multiferroic BiFeO3/CoFe2O4 bilayered by chemical solution deposition route are investigated. It is observed that magnetic annealing can enhance the crystallization quality, texture and densification as well as dielectric properties. In addition, the magnetolosses decrease with increasing the magnetic fields. Moreover, both increase of the polarization and decrease of the leakage current due to magnetic annealing are beneficial for potential applications of BiFeO3 films.  相似文献   

14.
The La2O3 nanoparticles incorporation and electrodeposition were used together to prepare the La-conversion coatings on brass surface in a basal solution containing rare earth salt and benzotriazole. The results showed that both of these techniques can improve the coatings formation and their protectiveness. A critical nanoparticulate La2O3 content and a critical deposition potential were observed, under which the conversion coatings had the highest protective properties. The composite La-conversion coatings could provide important protection against brass corrosion for considerable immersion periods in 3.5% NaCl solution because it ennobled the corrosion potential and decreased the anodic current.  相似文献   

15.
This paper reports a study of how the choice of plasma spray parameters, used during deposition of Al2O3-13%TiO2 coatings on carbon steel, influences the cavitation erosion properties of such coatings. The parameters studied are the power feeding rate and hydrogen flow rate. The surface and cross section of coatings before and after cavitation were also observed by scanning electron microscopy (SEM). The phases present in the coatings were characterized by X-ray diffraction method (XRD). The microscopic observations were used to study the inter-lamellar connection, porosity, unmelted particles and so on inside the coating. We also measured the roughness, microhardness, adhesion strength and cavitation erosion of the coatings. The XRD results showed that the coating includes different allotropes of Al2O3 such as α and γ. The cavitation erosion studies of the coatings were conducted by ultrasonic cavitation testing on the basis of ASTM G32 standard. It was found that cavitation erosion is accelerated around the unmelted particles and porosities. The results reveal that the cavitation resistance of the coating is determined by its microstructure and that increasing discontinuities (inside the coating) reduce its cavitation resistance. We have found that the coating obtained at hydrogen gas flow rate of 16 L/min and powder feeding rate of 20 g/min has the best cavitation resistance.  相似文献   

16.
The mechanical properties of plasma-sprayed Al2O3/ZrSiO4 coatings were investigated by indentation-based techniques. Two types of feedstock were used to prepare the coatings: spray-dried powders and plasma-spheroidized powders. A 100-kW direct current (d.c.) thermal plasma system was employed. The values obtained were found to exhibit a close relationship with the microstructure of the as-sprayed coatings, which composed of zircon, alumina, amorphous silica and tetragonal zirconia. The coatings produced with plasma-spheroidized powders had higher microhardness, Young's modulus and fracture toughness than that produced with the spray-dried powders. The coatings produced with plasma-spheroidized powders by a 100-kW computerized system at 15 kW of net plasma energy had the best mechanical properties, while those deposited at 19 kW of net plasma energy had the worst properties due to the high density of cracks in the coatings.  相似文献   

17.
A novel anti-corrosion sol–gel based Al2O3 coating was developed on the AZ91D magnesium alloy. The morphology, microstructure and composition of the coatings were investigated by scanning electron microscope coupled with energy dispersive spectroscopy, Fourier transform infrared spectrum analysis, X-ray diffraction, thermo-gravimetric and differential thermal analysis. The corrosion resistance of the coatings in 3.5 NaCl wt.% solution was studied using electrochemical measurements. The results demonstrated that a homogeneous Al2O3 coating could be obtained and the sol–gel coated samples sintered at 380 °C had the best corrosion resistance properties as compared to the specimens sintered at 120 and 280 °C.  相似文献   

18.
在45钢基体表面等离子弧喷涂制备了掺杂不同含量CeO2纳米ZrO2涂层,运用XRD,SEM对涂层的组织结构进行了分析,测试了涂层的结合强度和显微硬度,考察了涂层与铝青铜对磨时的摩擦磨损性能.结果表明,CeO2增加了ZrO2涂层的致密性、结合强度和显微硬度.纳米ZrO2涂层中加入CeO2后,增加了ZrO2涂层/铝青铜摩擦副的摩擦系数,增强了纳米ZrO2涂层,耐磨能力.涂层与铝青铜对磨时,随着CeO2含量的增加,ZrO2涂层粘着磨损形式增强,而涂层脆性断裂脱落的趋势减轻.  相似文献   

19.
In2O3对Ni60激光熔覆层的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
向Ni60合金粉末中加入适量的In2O3选取合适的工艺参数,采用激光熔覆技术在45钢表面上获得了无裂纹的高质量熔覆层。对熔覆层显微组织进行了观察和分析,测试了熔覆层的显微硬度和摩擦磨损性能。结果表明,同未加入In2O3的Ni60激光熔覆层相比,加入适当比例In2O3的Ni60熔覆层,虽然硬度有所降低,但硬度分布更加均匀,且在该文摩擦条件下耐磨性提高。In2O3能够降低Ni60激光熔覆层裂纹敏感性的原因在于适量的In2O3能够抑制粗大块状硬质相的生长,改善枝晶分布,细化组织晶粒,提高涂层韧性。  相似文献   

20.
Effects of plasma treatment on bioactivity of TiO2 coatings   总被引:1,自引:0,他引:1  
In this work, nano-TiO2 powders were deposited on titanium alloy substrates by atmospheric plasma spraying, followed by plasma immersion ion implantation (PIII) using hydrogen, oxygen and ammonia gases. The bioactivities of PIII-treated TiO2 coatings were evaluated by the formation of apatite on their surface after soaked in simulated body fluids (SBF) for a period of time. As-sprayed TiO2 coating is composed of rutile, anatase and TiO2−x (most of them is Ti3O5). After immersion in SBF for two weeks, the hydrogen PIII-treated TiO2 coating can induce bone-like apatite formation on its surface but apatite cannot be formed on the surface of as-sprayed and oxygen, ammonia PIII-treated TiO2 coatings. The results obtained indicated that a hydrogenated surface plays a very important role to induce bioactivity of TiO2 coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号