首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Typically, fatigue crack propagation in railway wheels is initiated at some subsurface defect and occurs under mixed mode (I–II) conditions. For a Spanish AVE train wheel, fatigue crack growth characterization of the steel in mode I, mixed mode I–II, and evaluation of crack path starting from an assumed flaw are presented and discussed.Mode I fatigue crack growth rate measurement were performed in compact tension C(T) specimens according to the ASTM E647 standard. Three different load ratios were used, and fatigue crack growth thresholds were determined according to two different procedures. Load shedding and constant maximum stress intensity factor with increasing load ratio R were used for evaluation of fatigue crack growth threshold.To model a crack growth scenario in a railway wheel, mixed mode I–II fatigue crack growth tests were performed using CTS specimens. Fatigue crack growth rates and propagation direction of a crack subjected to mixed mode loading were measured. A finite element analysis was performed in order to obtain the KI and KII values for the tested loading angles. The crack propagation direction for the tested mixed mode loading conditions was experimentally measured and numerically calculated, and the obtained results were then compared in order to validate the used numerical techniques.The modelled crack growth, up to final fracture in the wheel, is consistent with the expectation for the type of initial damage considered.  相似文献   

2.
ABSTRACT The fatigue crack growth behaviour of 0.47% carbon steel was studied under mode II and III loadings. Mode II fatigue crack growth tests were carried out using specially designed double cantilever (DC) type specimens in order to measure the mode II threshold stress intensity factor range, ΔKIIth. The relationship ΔKIIth > ΔKIth caused crack branching from mode II to I after a crack reached the mode II threshold. Torsion fatigue tests on circumferentially cracked specimens were carried out to study the mechanisms of both mode III crack growth and of the formation of the factory‐roof crack surface morphology. A change in microstructure occurred at a crack tip during crack growth in both mode II and mode III shear cracks. It is presumed that the crack growth mechanisms in mode II and in mode III are essentially the same. Detailed fractographic investigation showed that factory‐roofs were formed by crack branching into mode I. Crack branching started from small semi‐elliptical cracks nucleated by shear at the tip of the original circumferential crack.  相似文献   

3.
Abstract— A model predicting the magnitude of frictional effects from fracture surface roughness on mode III fatigue crack growth is presened. Analysis of published data indicates that fracture surface roughness of the order of micrometers or less is enough to account for mode III fatigue crack growth retardation observation for increasing crack lengths for growth at constant Δ K . The model suggests that high strength materials will exhibit a greater resistance to shear crack growth than low strength materials. It also suggests that the resistance to shear crack growth will be more prominent at low nominal applied shear stress. The results of the analysis suggest that the concept of similitude does apply to mode III fatigue crack growth when the effects of friction on the stress intensity factor are included.  相似文献   

4.
CRACK PROPAGATION UNDER MIXED MODE (I + III) LOADING   总被引:1,自引:0,他引:1  
Abstract— In this paper are presented the results of fatigue crack propagation tests on angled-slit, three point bend mixed-mode (I + III) specimens manufactured from a low pressure steam turbine rotor forging. The path of crack propagation has been studied for two mixed mode (I + III) loading conditions. It has been observed that crack growth occurs by a mode I mechanism and a model has been developed to correlate crack growth rates in mixed mode (I + III) specimens with data from pure mode I fatigue tests.  相似文献   

5.
A two-parameter model for mode I fatigue delamination growth has been developed and is presented in this paper. The model is based on the mechanisms of decohesion that was determined through SEM investigations. The experimental data of fatigue delamination growth under mode I fatigue from the current study and the literature has been used for the validation of the model.  相似文献   

6.
In this paper a two-dimensional fatigue cohesive zone model (CZM) for crack propagation in composites under cyclic loading has been formulated and validated through successful predictions of fatigue crack growth under pure and mixed mode conditions for several different composites. The proposed fatigue CZM assumes simple power-law functions for fatigue damage accumulation of which the damage parameters can be calibrated from simple fatigue tests under pure mode I and mode II conditions. The model relies solely on the in situ cohesive responses for fatigue damage rate calculation, enabling the differentiation of the local elemental load history from the global load history. An effective cycle jump strategy for high-cycle fatigue has also been proposed. It has been demonstrated that once calibrated, the fatigue CZM can predict the Paris laws for the pure modes. Furthermore, it can predict the Paris laws of any mixed-mode conditions without the need of additional empirical parameters. This is of significant practical importance because it leads to greatly reduced experimental needs for mixed mode crack propagation widely observed in composites under cyclic loads.  相似文献   

7.
Abstract— The effect of non-proportional overloading on both low cycle and high cycle fatigue life has been studied. Low cycle multiaxial fatigue tests were performed on EN 15R (a low alloy steel) using sequential loading blocks which comprised uniaxial "ordinary" cycles and torsion "overload" cycles, and vice versa. In high cycle fatigue, the behaviour of mode I crack growth in a medium carbon steel subjected to mixed (I and II) mode overloading was examined.
Under tension-torsion sequential overloading, crack growth behaviour shows an earlier transition from Stage I to Stage II with a pronounced reduction in accumulated fatigue life. Tensile overloading on torsion cycles was found to be more damaging compared to torsion overloading on repeated tensile cycles. The crack-load interaction in sequential overloading and its influence on crack growth and fatigue life is discussed. In low strain fatigue, Stage II crack growth retardation closely relates to the overload plastic zone size, crack tip blunting and crack surface shielding. Mixed mode overloading is shown to have a significant effect only if the mode I component of overloading is large enough to keep the crack open. Under both low cycle and high cycle fatigue conditions non-proportional overloading is shown to be more damaging than proportional overloading.  相似文献   

8.
Stable fatigue crack propagation is predominantly described by the Paris power law correlation of the crack growth rate with the amplitude cyclic stress intensity. The Paris relationship works well for most ductile materials but does not capture the response for fatigue–brittle materials lacking a cyclic damage mechanism, including ceramics and many polymers. Instead, crack growth rate of fatigue–brittle materials correlates to the peak cyclic stress intensity factor, \(\hbox {K}_{\mathrm{max}}\). This work shows that \(\hbox {K}_{\mathrm{max}}\) correlation of fatigue crack growth is derived directly from static mode crack tip behavior with constant correlation coefficients, and that \(\Delta \hbox {K}\) correlations are not generally applicable for static mode crack propagation in fatigue–brittle polymers. This derivation predicts load ratio, frequency, and waveform effects, which are included in a general static mode fatigue crack propagation law. Fatigue crack propagation data of a known fatigue–brittle polymer are presented to demonstrate static mode crack propagation behavior correlation with \(\hbox {K}_{\mathrm{max}}\) with constant parameters.  相似文献   

9.
Crack-face interference-free crack growth rate data were obtained from special intermittent overload tests on axial-torsion specimens. Data obtained from these tests and short crack data taken from the literature fell into a single scatter band. These data were used in a short crack growth model to predict the crack length at the changeover from a shear mode to a tensile mode crack plane and the fatigue life for axial-torsional fatigue tests that again used these special overload sequences to achieve crack closure-free/crack-face interference-free crack growth. Model predictions based on two separate criteria for mode change – maximum crack growth rate and maximum strain energy release rate – each predicted reasonably well both the crack length at the change in crack plane and the fatigue life.  相似文献   

10.
Abstract— From fractographic observations of specimens that have failed due to rolling contact fatigue, it has been concluded that the first stage of damage is the formation of mode II fatigue cracks parallel to the contact surface due to the cyclic shear stress component of the contact stress. Although these initial subsurface cracks, in both metals and ceramics, are produced in a direction parallel to the cyclic shear stress, cracks eventually grow in a direction close to the plane of the maximum tensile stress if we apply a simple mode II loading to them. The difference between crack growth in simple mode II loading and crack growth due to rolling contact fatigue is, we suppose, whether or not there is a superimposed compressive stress. Based on this hypothesis, we developed an apparatus to obtain the intrinsic characteristics of mode II fatigue crack growth, and developed a simplified model of subsurface crack growth due to rolling contact fatigue.
Some results in terms of da/dN versus ΔKII relations have been obtained using this apparatus on specimens of steel and aluminum alloys. Fractographs of the mode II fatigue fracture surfaces of the various materials are also provided.  相似文献   

11.
Abstract— In order to evaluate the threshold value Δ K τth for mode II fatigue crack growth, a new measurement method of mode II fatigue crack growth has been developed. This method uses a conventional closed-loop tension—compression fatigue testing machine without additional loading attachments. Mode II fatigue tests for structural steel and rail steel have been carried out. This method has proved successful and has reproduced mode II fatigue fracture surfaces similar to those found in the spalling of industrial steel-making rolls. The crack length during testing was measured by an AC potential method. The relationships between d a /d N and Δ K τ and AK τth for several materials have been obtained.  相似文献   

12.
Flaking type failure in rolling‐contact processes is usually attributed to fatigue‐induced subsurface shearing stress caused by the contact loading. Assuming such crack growth is due to mode II loading and that mode I growth is suppressed due to the compressive stress field arising from the contact stress, we developed a new testing apparatus for mode II fatigue crack growth. Although the apparatus is, as a former apparatus was, based on the principle that the static KI mode and the compressive stress parallel to the pre‐crack are superimposed on the mode II loading system, we employ direct loading in the new apparatus. Instead of the simple four‐point‐shear‐loading system used in the former apparatus, a new device for the application of a compressive stress parallel to the pre‐crack has been developed. Due to these alterations, mode II cyclic loading tests for hard steels have become possible for arbitrary stress ratios, including fully reversed loading (R=?1); which is the case of rolling‐contact fatigue. The test results obtained using the newly developed apparatus on specimens made from bearing steel SUJ2 and also a 0.75% carbon steel, are shown.  相似文献   

13.
ABSTRACT A previously presented qualitative model for the rolling contact fatigue and spalling failure of back‐up rolls has been quantified in terms of crack lengths and growth directions. The morphologies of surface initiated fatigue cracks have been predicted using published data on the mode I and mode II thresholds in low carbon and roll steels, respectively, and the theoretical determination of the mode I and mode II stress intensity factors at the tips of the inclined surface cracks. The predictions have been validated by using the results of the metallographic examination of rolling contact fatigue cracks produced in test discs used in experimental simulations and the examination of spalled material from a back‐up roll.  相似文献   

14.
Cracks often initiate from the mechanical joints which are widely used in structural components. It has been reported that cracks in mechanical joints are under mixed‐mode condition and there is a critical angle at which mode I stress intensity factor becomes maximum. The crack propagates in an arbitrary direction and the prediction of fatigue crack growth path is needed to provide against crack propagation and examine safety. In this study, mixed‐mode fatigue crack growth tests are performed for horizontal and critical inclined cracks in mechanical joints. Fatigue crack growth paths are predicted using a weight function approach and maximum tangential stress criterion.  相似文献   

15.
This paper presents a computational technique for the prediction of fatigue‐driven delamination growth in composite materials. The interface element, which has been extensively applied to predict delamination growth due to static loading, has been modified to incorporate the effects of cyclic loading. Using a damage mechanics formulation, the constitutive law for the interface element has been extended by incorporating a modified version of a continuum fatigue damage model. The paper presents details of the fatigue degradation strategy and examples of the predicted fatigue delamination growth in mode I, mode II and mixed mode I/II are presented to demonstrate that the numerical model mimics the Paris law behaviour usually observed in experimental testing. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Plastic deformation within the crack tip region introduces internal stresses that modify subsequent behaviour of the crack and are at the origin of history effects in fatigue crack growth. Consequently, fatigue crack growth models should include plasticity-induced history effects. A model was developed and validated for mode I fatigue crack growth under variable amplitude loading conditions. The purpose of this study was to extend this model to mixed-mode loading conditions. Finite element analyses are commonly employed to model crack tip plasticity and were shown to give very satisfactory results. However, if millions of cycles need to be modelled to predict the fatigue behaviour of an industrial component, the finite element method becomes computationally too expensive. By employing a multiscale approach, the local results of FE computations can be brought to the global scale. This approach consists of partitioning the velocity field at the crack tip into plastic and elastic parts. Each part is partitioned into mode I and mode II components, and finally each component is the product of a reference spatial field and an intensity factor. The intensity factor of the mode I and mode II plastic parts of the velocity fields, denoted by I/dt and II/dt, allow measuring mixed-mode plasticity in the crack tip region at the global scale. Evolutions of I/dt and II/dt, generated using the FE method for various loading histories, enable the identification of an empirical cyclic elastic–plastic constitutive model for the crack tip region at the global scale. Once identified, this empirical model can be employed, with no need of additional FE computations, resulting in faster computations. With the additional hypothesis that the fatigue crack growth rate and direction can be determined from mixed-mode crack tip plasticity (I/dt and II/dt), it becomes possible to predict fatigue crack growth under I/II mixed-mode and variable amplitude loading conditions. To compare the predictions of this model with experiments, an asymmetric four point bend test system was setup. It allows applying any mixed-mode loading case from a pure mode I condition to a pure mode II. Initial experimental results showed an increase of the mode I fatigue crack growth rate after the application of a set of mode II overload cycles.  相似文献   

17.
The effects of austempering temperature and isothermal transformation time on fatigue crack growth rate in a ductile iron with a bainitic structure have been studied. Crack growth rates in austempered samples were compared with those in materials with a ‘bullseye’ casting structure. Using scanning electron microscopy, the mechanism of the fatigue crack growth can be understood by observing the fracture surface of a fatigue specimen. X-ray diffractometry was used to determine the volume fraction of retained austenite. It can be concluded that the volume fraction of retained austenite, the fracture mode and the matrix microstructure are closely related to the fatigue crack propagation rate and the fracture mode.  相似文献   

18.
The paper studies the effects of artificial corrosion pits and complex stress fields on the fatigue crack growth of full penetration load‐carrying fillet cruciform welded joints with 45° inclined angle. Parameters of fatigue crack growth rate of welded joints are obtained from SN curves under different levels of corrosion. A numerical method is used to simulate fatigue crack growth using different mixed mode fatigue crack growth criteria. Using polynomial regression, the crack shape correction factor of welded joints is fitted as a function of crack depth ratios. Because the maximum circumferential stress criterion is simple and easy to use in practice, fatigue crack growth rate is modified using this criterion. The relationship of effective stress intensity factor, crack growth angle and crack depth is studied under different corrosion levels. The simulated crack growth path obtained from the numerical method is compared with the actual crack growth path observed by fatigue tests. The results show that fatigue cracks do not initiate at the edge or bottom of pits but at the weld toes where the maximum stress occurs. The artificial corrosion pits have little effect on the effective stress intensity factor ranges and crack growth angle. The fatigue crack growth rates of welded joints with pits 1 and 2 are 1.15 times and 1.40 times larger than that of the welded joint with no pit, respectively. The simulated crack growth path agrees well with the actual one. The fatigue life prediction accuracy using the modified formulation is improved by about 18%. The crack shape correction factor obtained using the maximum circumferential stress criterion is recommended being used to calculate fatigue life.  相似文献   

19.
VECTOR CTD CRITERION APPLIED TO MIXED MODE FATIGUE CRACK GROWTH   总被引:1,自引:0,他引:1  
Abstract— This work is aimed at developing a general parameter based on the deformation intensity at a mixed mode crack tip to predict crack growth behaviour, especially in the near threshold region. Being a mechanisms-related parameter, the vector crack tip displacement (CTD) is defined as a vector summation of CTOD and CTSDc which act, respectively in the directions of mode I and mode II fatigue crack growth. The basic assumption is that both direction and rate of mixed mode fatigue crack growth are governed by the vector ΔCTD, which represents the resultant of the "driving force"at the crack tip. The analytical predictions obtained by using the vector ΔCTD are in good agreement with the reported experimental results of mixed mode I and II fatigue cracks.  相似文献   

20.
Rough fracture surfaces usually influence substantially the fatigue growth properties of materials in the regime of low growth rates. Friction, abrasion, interlocking of fracture surface asperites and fretting debris reduce the applied load amplitude to a smaller effective value at the crack tip (“sliding crack closure”, or “crack surface interaction” or “crack surface interference”). The influence of these phenomena on the fatigue crack growth properties of structural steel is discussed and compared for the two kinds of mixed mode loading employed in this work. Mixed mode loading was performed by (A): cyclic mode III + superimposed static mode I and (B): cyclic mode I + superimposed static mode III loading. Such loading cases frequently occur in rotating load-transmission devices. Several differences are typical for these two mixed-mode loading cases. A superimposed static mode I load increases the crack propagation rate under cyclic mode III loading whereas cyclic mode I fatigue crack propagation is retarded when a static mode III load is superimposed. Increase of the R -ratio (of the cyclic mode III load) leads to an insignificant increase of fracture surface interaction and subsequently to a small decrease of the crack growth rate for cyclic mode III loading, whereas higher R -values during cyclic mode I+ superimposed static mode III loading lead to a significant reduction of the crack growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号