首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
微生物油脂可作为生物柴油和其他油脂基化学品的原料,明确产油菌株的产油规律和所产油脂脂肪酸组成是确定其开发潜力的关键。在葡萄糖限氮培养基中对比了3株产油酵母的油脂积累能力,圆红冬孢酵母皮状丝孢酵母禾本红酵母;采用GC-MS分析了3株产油酵母的脂肪酸组成,3株产油酵母油脂均以C16和C18为主,可作为生物柴油的原料油脂。  相似文献   

2.
制备生物柴油用小球藻的油脂富集培养研究   总被引:5,自引:0,他引:5  
研究了培养温度、光照强度、氮源及其氮含量对小球藻Chlorella spp的生长、油脂含量及脂肪酸的影响,以期获得最为适宜的富含油脂微藻的培养条件.采用比生长速率评价微藻的生长状况,以溶剂浸提法提取微藻中的油脂,并采用气质联用和气相色谱分析微藻的脂肪酸纰成.研究结果表明.既能使微藻Chlorella spp良好生长又可提高其油脂含量的培养条件为:温度25℃、光照强度3 500 lux、添加氮源硝酸钠并使其含氮质量浓度为0.25 g/L,此时的油脂含量可达43.7%.微藻脂肪酸的组成以C16∶0、C18∶0、C18∶2为主,表明小球藻的主要脂肪酸组成为C16和C18脂肪酸.  相似文献   

3.
通过GC及GC MS研究了偃松子油的主要脂肪酸组成。结果表明偃松子仁含油率为38.4 5 % ,松子仁中主要含有油酸 4 0 .7% ,亚油酸 16 .9% ,软脂酸 (棕榈酸 ) 2 8.0 % ,辛酸 5 .1% ,硬脂酸 3.8%等。不饱和脂肪酸总含量至少达 5 9.0 %。  相似文献   

4.
建立了分析越南安息香种子油、果实和果壳的脂肪酸组成的在线甲基化-气相色谱法。将微克级的安息香样品与2μL衍生化试剂三甲基氢氧化硫(0.2 mol/L)加入裂解器,在350℃下瞬间反应,由气相色谱在线检测到8种脂肪酸甲酯成分,主要有棕榈酸( C16∶0)、硬脂酸( C18∶0)、油酸( C18∶1)、亚油酸( C18∶2)和亚麻酸( C18∶3),不饱和脂肪酸含量在84.5%以上,其中亚油酸含量最高,达47.29%。5次平行测定的相对标准偏差( RSD)小于3.81%。并结合相似性分析法比较了4种不同产地的安息香种仁与6种食用油的脂肪酸组成,相似性结果表明不同产地的安息香种仁的脂肪酸组成相似,其脂肪酸组成与食用植物油相近,与玉米油的组成分布最为接近,相似系数在0.987~0.990,且越南安息香种子中人体必需的多不饱和脂肪酸含量( C18∶2和C18∶3)与大豆油和葵花籽油相近,高于一般植物油,具有较高的营养价值。结果表明该法简便、快速、准确,适合越南安息香种子油脂的测定。  相似文献   

5.
不同亚临界溶剂从微拟球藻湿藻泥中提取油脂   总被引:2,自引:0,他引:2  
以微拟球藻(Nannochlorsis sp.)湿藻泥为原料,研究了亚临界乙醇、亚临界乙醇-正己烷共溶剂及硫酸辅助亚临界乙醇-正己烷共溶剂3种萃取体系对微藻油脂提取的影响. 结果表明,亚临界乙醇-正己烷比亚临界乙醇对湿藻细胞有更高的油脂萃取率和低的溶剂用量,加入少量硫酸可进一步提高油脂的提取率、降低溶剂用量. 微拟球藻湿藻泥(含水约70%)优化提取条件为,正己烷/乙醇体积比3:1,液固比(溶剂/藻细胞干重)7 mL/g,加入藻细胞干重6%的硫酸,1.5 MPa下90℃萃取30 min,在此条件下油脂提取率可达90%以上. 3种萃取体系获得的微藻油脂均以甘油三酯为主,甘油三酯的脂肪酸主要为C16:0, C18:1和C16:1,其中硫酸辅助亚临界共溶剂萃取的微藻油脂中甘油三酯含量最高,约占总脂的86%以上.  相似文献   

6.
肥皂是脂肪酸的强碱金属盐类。由于制皂油脂所含的脂肪酸成分,各种脂肪酸的碳数以及饱和程度各异,各单体脂肪酸皂的性能差别也很大。制皂应选择适当的混合油脂配合做原料,考虑脂肪酸的组成以保证肥皂的泡沫性、去污力、溶解度以及肥皂的组织结构和外观形式。比较适当的天然脂肪酸是C12-C18的饱和脂肪酸和油酸,凡是低于C12的及大于C18的脂肪酸都不宜选用。多烯酸和异构酸对肥皂质量有不良影响。C13-C18合成脂肪酸色泽洁白纯净,无不愉快气  相似文献   

7.
高浓度有机废水大量排放,是造成我国水体污染的主要原因。面临石油储量的不断减少,能源需求的不断增长,需要发展可再生能源。生物柴油具有可再生、环保性以及可替代现有石化柴油的特点,引起了世界许多国家的高度重视,成为最受欢迎的石化柴油替代品。废水微生物产油,一方面能够处理废水起到保护环境的作用;另一方面因为能够生产油脂而解决人类资源短缺的问题。对圆红冬孢AS 2.1389进行研究,结果表明适宜处理条件为:进水COD浓度为废水原液的1/2,pH值不调节,发酵时间为96 h,接种量为5%。该条件下可使酒精废水COD的去除率达72.3%,菌体油脂含量为31.9%,油脂成分主要为C15(十五酸)~C18(硬脂酸、油酸和亚油酸等)的脂肪酸,适合生产生物柴油。对圆红冬孢酵母进行驯化,驯化后废水COD降解率达到(75.9±0.8)%,菌体油脂含量达到(39.8±4.4)%。  相似文献   

8.
研究了番荔枝籽油脂中脂肪酸的组成.用索氏脂肪抽提器提取番荔枝籽的油脂,并以GC-MS分析油脂脂肪酸的组成.结果表明,番荔枝籽油脂收率达29.2%;番荔枝籽油脂中含有8种脂肪酸,主要为:油酸(45.37%)、亚油酸(30.68%)、棕榈酸(13.60%)和硬脂酸(8.94%),其中不饱和脂肪酸含量达76.29%.番荔枝籽含油量高,脂肪酸种类丰富,尤其是不饱和脂肪酸含量较高,具有较高的开发利用价值.  相似文献   

9.
采用微波强化提取法、超声强化提取法及超声-微波协同法提取碱蓬籽油,从最佳提取工艺条件、出油率、主要脂肪酸种类及相对含量三个方面对三种强化提取方法加以对比分析。结果表明,协同法的出油率为20.34%±0.23%,略低于超声法,提取时间仅为6 min,是超声法提取时间的11.54%,且为微波法的一半。协同法所含四种主要脂肪酸(亚油酸(C18:2)、油酸(C18:1)、棕榈酸(C16:0)及硬脂酸(C18:0))的相对含量的总量最高,达98.51%,优于其他两种强化提取方法。证明超声-微波协同法是碱蓬籽油比较理想的强化提取方法。  相似文献   

10.
对印楝和苦楝2个亲本采用体细胞融合技术杂交形成的7年生杂交楝进行了果实含油量测定,并对其籽油进行了脂肪酸组成分析。结果表明:果皮和果肉含油量较低,分别为 1.65% 和 1.53%;种仁含油量较高,为 39.20%。种仁经提取获得籽油后进行甲酯化处理,再进行GC-MS分析,共检测出6种脂肪酸。它们是亚油酸(C18:2)67.00%、油酸(C18:1)18.03%、棕榈酸(C16:0)8.96%、硬脂酸(C18:0)3.94%、花生酸(C20:0)0.35% 和未知脂肪酸 1.72%;其中不饱和脂肪酸占 85.03%。杂交楝种仁含油量比苦楝高出1.6个百分点。  相似文献   

11.
The seasonal effects on the fatty acid composition of triacylglycerol (TG) and phospholipid (PL) in the gonad and liver of Mastacembelus simack were determined using the gas chromatographic method. The most abundant fatty acids in the investigated seasons and tissues were palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n‐9), palmitoleic acid (C16:1n‐7), arachidonic acid (C20:4n‐6), eicosapentaenoic acid (C20:5n‐3), and docosahexaenoic acid (C22:6n‐3). The distribution proportions of ∑SFA (saturated fatty acids), ∑MUFA (monounsaturated fatty acids) and ∑PUFA (polyunsaturated fatty acids) were found to be different among PL and TG fractions in all seasons. The total lipid content of gonad and liver were 1.32 (November)–4.90 % (September) and 1.32 (September)–3.94 % (January), respectively. It was shown that the total lipid and fatty acid compositions in the gonad and liver of fish were significantly influenced by seasons.  相似文献   

12.
Leaves from soybean (Glycine max (L.) Merr.) plants were assayed to determine if the relationship between temperature and relative fatty acid composition observed in the seed oil also existed for the triglycerides in the leaf oil. Leaf samples were harvested from eight soybean lines (A5, A6, C1640, Century, Maple Arrow, N78-2245, PI 123440 and PI 361088B) grown at 40/30,28/22 and 15/ 12°C day/night. At 40/30 and 28/22°C, seven fatty acids were observed at a level greater than 1.0%. These included the five major fatty acids found in the seed oil: palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2) and linolenic (18:3) acid; plus two fatty acids that had retention times the same as palmitoleic (16:1) and γ-linolenic (18:3 g) acid. In addition, an eighth fatty acid that had a retention time the same as behenic (22:0) acid was found in the leaves of all lines at 15/12°C. Palmitic, palmitoleic and stearic acid content did not differ significantly over temperatures. The oleic and linoleic acid content were each highest at 15/12°C, while the γ-linolenic and the linolenic acid content were each highest at 40/30°C. The fatty acid composition of the triglyceride portion of the leaf oil did not display the same pattern over temperatures as that observed for seed oil.  相似文献   

13.
Fatty acid composition of carcass and liver and proximate analysis of liver were studied in 14–28 day old Pitman-Moore miniature pigs, 26 sow-reared and 30 fed a semisynthetic diet in which the fat was lard. With increasing age, fat of carcass, but not of liver, became significantly more unsaturated. The percentage of palmitic acid (16∶0) and total saturated fatty acids was significantly greater and the percentage of linoleic acid (18∶2) and total unsaturated fatty acids significantly less in carcasses of male than of female pigs. No sex-related differences in proximate or fatty acid composition of the liver were noted. Carcasses of sow-reared pigs contained significantly greater percentages of myristic (14∶0), palmitoleic (16∶1), and linoleic acids and significantly lesser percentages of stearic (18∶0) and oleic (18∶1) acids than did those of pigs fed the semisynthetic diet. Diet-related differences in fatty acid composition of liver closely paralleled those of carcass, although liver contained markedly greater percentages of stearic and arachidonic (20∶4) acids and lesser percentages of palmitoleic and oleic acids than did carcass. Diet-related differences in fatty acid composition of carcass and liver are discussed in relation to the fatty acid composition of dietary fat (sow milk and lard).  相似文献   

14.
The effect of oat bran-(OBD) and wheat bran-enriched diets (WBD) on fatty acid composition of neutral lipids and phospholipids of rat lymphocytes and macrophages was investigated. In neutral lipids of lymphocytes, OBD reduced the proportion of palmitoleic acid (48%), whereas WBD reduced by 43% palmitoleic acid and raised oleic (18%), linoleic (52%), and arachidonic (2.5-fold) acids. In neutral lipids of macrophages, OBD increased palmitic (16%) and linoleic (29%) acids and slightly decreased oleic acid (15%). The effect of WBD, however, was more pronounced: It reduced myristic (60%), stearic (24%) and arachidonic (63%) acids, and it raised palmitic (30%) and linoleic (2.3-fold) acids. Neither OBD nor WBD modified the composition of fatty acids in phospholipids of lymphocytes. In contrast, both diets had a marked effect on composition of fatty acids in macrophage phospholipids. OBD raised the proportion of myristic (42%) and linoleic (2,4-fold) acids and decreased that of lauric (31%), palmitoleic (43%), and arachidonic (29%) acids. WBD increased palmitic (18%) and stearic (23%) acids and lowered palmitoleic (35%) and arachidonic (78%) acids. Of both cells, macrophages were more responsive to the effect of the fiber-rich diets on fatty aicd composition of phospholipids. The high turnover of fatty acids in macrophage membranes may explain the differences between both cells. The modifications observed due to the effects of both diets were similar in few cases: an increase in palmitic and linoleic acids of total neutral lipids occurred and a decrease in palmitoleic and arachidonic acids of phospholipid. Therefore, the mechanism involved in the effect of both diets might be different.  相似文献   

15.
Marine fishes are rich in n-3 polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are extremely important for human health. The objective of our work was to determine the content and composition of lipids and fatty acids in the different tissues of cobia from China and to evaluate their nutritional value. The results showed that cobia from China was rich in lipids; the neutral lipid content was above 82%; the content of cholesterol and phospholipid was low. Eighteen fatty acids were identified. Myristic (C14:0), palmitic (C16:0), and stearic acids (C18:0) were the main saturated acids; palmitoleic (C16:1n-7) and oleic acid (C18:1n-9) were the main monounsaturated fatty acids. EPA and DHA were the main PUFA; n-3 and n-6 PUFA were present as 12–18% and 2.6–3.2% of the total fatty acids, respectively. The n-6/n-3 ratio was in the range from 0.18 to 0.22, which was far lower than that (5:1) recommended by WHO/FAO. Therefore, cobia lipids from China have a high nutritional value.  相似文献   

16.
HDL particles can be structurally modified in atherosclerotic disorders associated with low HDL cholesterol level (HDL-C). We studied whether the lipidome of the main phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) species of HDL2 and HDL3 subfractions is associated with premature coronary heart disease (CHD) or metabolic syndrome (MetS) in families where common low HDL-C predisposes to premature CHD. The lipidome was analyzed by LC-MS. Lysophosphatidylcholines were depleted of linoleic acid relative to more saturated and shorter-chained acids containing species in MetS compared with non-affected subjects: the ratio of palmitic to linoleic acid was elevated by more than 30%. A minor PC (16:0/16:1) was elevated (28–40%) in MetS. The contents of oleic acid containing PCs were elevated relative to linoleic acid containing PCs in MetS; the ratio of PC (16:0/18:1) to PC (16:0/18:2) was elevated by 11–16%. Certain PC and SM ratios, e.g., PC (18:0/20:3) to PC (16:0/18:2) and a minor SM 36:2 to an abundant SM 34:1, were higher (11–36%) in MetS and CHD. The fatty acid composition of certain LPCs and PCs displayed a characteristic pattern in MetS, enriched with palmitic, palmitoleic or oleic acids relative to linoleic acid. Certain PC and SM ratios related consistently to CHD and MetS.  相似文献   

17.
The fatty acid content and composition of 18 species of freshwater fish filets were determined. The fat content and composition varied with anatomical location. The anterior ventral regions of trout and salmon contained more lipids than the posterior dorsal sections. Marked variations in fatty acid composition between species were observed. Palmitic (C16:0), palmitoleic (C16:1), oleic (C18:l), eicosapentaenoic (C20:5 ω3), and docosahexaenoic (C22:6 ω3) were the most abundant fatty acids. The fatty acids were tabulated according to the number and positions of the double bonds. Significant quantities of ω6 C18:2 and C20:4 fatty acids were found in several species.  相似文献   

18.
The antioxidant effects of oil‐in‐water nanoemulsion based on edible citrus peel essential oils on the fatty acid composition of rainbow trout fillets stored at 4 ± 2 °C are investigated. Fish fillets are treated with nanoemulsion and stored for 16 days. Lipid samples are converted into fatty acid methyl esters which are then detected by gas chromatagrophy (GC). The results show that palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), vaccenic acid (C18:1?‐7), oleic acid (C18:1?9), eicosenoic acid (C20:1?9), linoleic acid (C18:2?6), linolenic acid (C18:3?3), eicosapentaenoic acid (EPA) (C20:5?3), and docosahexaenoic acid (DHA) (C22:6?3) are the most important fatty acids in fish meat. While polyene index and hypocholesterolemic:hypercholesterolaemic fatty acid ratios decrease in trout fillets during cold storage, thrombogenicity index and atherogenicity index generally increase (especially in control and Tween 80 groups). The concentrations of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) are higher in the treatment groups and the saturated fatty acids (SFAs) are lower in all groups compared to those of the control group. Application of nanoemulsion based on citrus essential oils prevents oxidation of PUFA especially EPA and DHA, thus has potential as a preservative for fish oil. Practical Applications: In recent years, nanotechnological applications have been increasingly applied to the protection of food. Similarly, natural essential oils are used to increase the shelf life of foods. This study demonstrates the combined effect of a new method of nanoemulsions and essential oils on the safety of foods.  相似文献   

19.
The objective of this study was to test the effect of a novel fatty acid mixture, enriched with myristoleic and palmitoleic acids, on plasma lipoprotein cholesterol concentrations. Weanling pigs were assigned to one of six groups and each group received a diet differing in fatty acid composition. Diets were fed for 35 days and contained 10 g added cornstarch/100 g (to provide baseline data) or 10 g added fatty acids/100 g. For those diets containing added fatty acids, extracted lipids contained 36% myristoleic plus palmitoleic acid combined (14∶1/16∶1 diet), 52% palmitic acid (16∶0 diet), 51% stearic acid (18∶0 diet), 47% oleic acid (18∶1 diet), or 38% linoleic acid (18∶2 diet). Witht the exception of the cornstarch diet, all diets contained approximately 30% myristic acid. There were no significant differences in weight gain across treatment groups (P=0.22). All diets caused a significant increase in triglycerides and in total, low density lipoprotein, high density lipoprotein, and very low density lipoprotein cholesterol. The increase in total plasma cholesterol from pretreatment values was greatest in pigs fed the 14∶1/16∶1 and 18∶1 diets. However, the increase in low density lipoprotein cholesterol from the pretreatment concentration was greatest in the 14∶1/16∶1-fed pigs. Increases in very low density lipoprotein cholesterol above pretreatment concentrations were lowest in 16∶0-fed pigs and greatest in 18∶1-fed pigs. Dietary fatty acids elicited changes in plasma fatty acids which generally were reflective of the diets, although the 18∶0 diet did not alter plasma fatty acid concentrations and the 16∶0 diet increased plasma 16∶0 only at the end of the study. These results demonstrated that the combination of myristoleic plus palmitoleic acids increased plasma cholesterol in young pigs, suggesting that fatty acid chain length, rather than degree of unsaturation, is primarily responsible for the effects of fatty acids on circulating lipoprotein cholesterol concentrations.  相似文献   

20.
Egg yolk lipids and maternal diet in the nutrition of turkey embryo   总被引:1,自引:0,他引:1  
Turkey hens were fed diets containing no added fat nor diets supplemented with soybean oil or neatsfoot oil. The composition of neutral and polar lipid fatty acids present in the unincubated turkey egg yolk was compared with that of those present in the yolk sac of the developing turkey embryo at different stages of development. Comparisons were made of the fatty acid fractions in the entire embryo homogenates, except liver and heart, which were analyzed separately. Changes in the relative amounts of the fatty acids are reported as affected by age of the embryo and by dietary lipids. The fatty acids from both the neutral and polar lipids which were utilized to the greatest extent for embryonic development were palmitoleic, oleic, linoleic, and linolenic, regardless of the dietary supplements. Arachidonic, tetracosenoic, and docosahexaenoic acids also were metabolized by the embryo. Saturated fatty acids, used by the embryo as development progressed, were palmitic, stearic, and arachidic acids. Analyses of the liver fatty acids showed that the C16∶0 C16∶1, C18∶0, C18∶1, and C20∶4 acids in the neutral and polar lipids decreased with embryonic development and varied with the type of diet. The heart contained low levels of myristic, palmitic, stearic, arachidic, and arachidonic acids in the neutral lipids and palmitoleic and oleic acids in the polar lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号