首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2O3 stabilizer content not only increases the critical fracture toughness (KIC) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia≥5 MPa.m1/2 in transformation-toughened ( K IC=8.5 MPa.m1/2) composites vs K Ia≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC=4.5 MPa.m1/2). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path.  相似文献   

2.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.  相似文献   

3.
Crack shielding stress intensities in in situ loaded compact tension specimens of two types of ceria-partially-stabilized zirconia/alumina (Ce-TZP/Al2O3) composites with prior histories of subcritical crack growth in sustained and tension-tension fatigue loading were directly assessed using laser Raman spectroscopy. Crack-tip stress fields within the transformation zones were measured by measuring a stress-induced frequency shift of a peak corresponding to the tetragonal phase. The peak shift as a function of the applied stress was separately calibrated using a ball-on-ring flexure test. Total crack shielding stress intensity was estimated from the far-field applied stress intensity and the local crack-tip stress intensity assessed from the measured near-crack-tip stresses. The shielding stress intensities were consistently lower in the fatigue specimens than in the sustained load crack growth specimens. The reduced crack shielding developed in the fatigue specimens was independently confirmed by measurements of larger crack-opening displacement under far-field applied load as compared to the sustained load crack growth specimens. Thus, diminished crack shielding was a major factor contributing to the higher subcritical crack growth rates exhibited by the Ce-TZP/Al2O3 composites in tension–tension cyclic fatigue. Calculations of zone shielding considering only the dilatational strains in the transformation zones accounted for 81% and 86% of the measured values in the sustained load crack growth specimens, but significantly overestimated the shielding in the fatigue specimens. Possible reasons for the diminished crack shielding in the fatigue specimens are discussed.  相似文献   

4.
YPSZ/Al2O3-platelet composites were fabricated by conventional and tape-casting techniques followed by sintering and HIPing. The room-temperature fracture toughness increased, from 4.9 MPa·m1/2 for YPSZ, to 7.9 MPa·m1/2 (by the ISB method) for 25 mol% Al2O3 platelets with aspect ratio = 12. The room-temperature fiexural strength decreased 21% and 30% (from 935 MPa for YPSZ) for platelet contents of 25 vol% and 40 vol%, respectively. Al2O3 platelets improved the high-temperature strength (by 110% over YPSZ with 25 vol% platelets at 800°C and by 40% with 40 vol% platelets at 1300°C) and fracture toughness (by 90% at 800°C and 61% at 1300°C with 40 vol% platelets). An amorphous phase at the Al2O3-platelet/YPSZ interface limited mechanical property improvement at 1300°C. The influence of platelet alignment was examined by tape casting and laminating the composites. Platelet alignment improved the sintered density by >1% d th , high-temperature strength by 11% at 800°C and 16% at 1300°C, and fracture toughness by 33% at 1300°C, over random platelet orientation.  相似文献   

5.
The influence of precracking techniques in the crack growth behavior of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) is investigated. Load-bridge and cyclic-compression precracking enhance subsequent tensile crack growth rates, in comparison to results that are found with precracks that are extended under four-point bending prior to testing. The actual influence of these precracking techniques in the near-threshold crack growth regime is remarkably different. Although load-bridge precracking produces a pattern of crack growth fluctuations for stress intensity factors, K , lower than the effective crack-growth threshold of the material, compression-fatigue precracks start to propagate under far-field tensile loads at very fast growth rates and for K values that are slightly higher than the effective threshold. Crack-tip shielding by tetragonal-to-monoclinic transformation develops gradually, influencing the crack growth behavior in Y-TZP. Proposed fatigue crack growth micromechanisms involve damage accumulation at the crack-tip region. For K max > 3 MPa·m1/2, fatigue crack growth rates are strongly affected by environmental interactions at the crack tip, and postulated fatigue micromechanisms include the cyclic degradation of crack-tip shielding.  相似文献   

6.
Electroconductive Al2O3–NbN ceramic composites were prepared by hot pressing. Dense sintered bodies of ball-milled Al2O3–NbN composite powders were obtained at 1550°C and 30 MPa for 1 h under a nitrogen atmosphere. The bending strength and fracture toughness of the composites were enhanced by incorporating niobium nitride (NbN) particles into the Al2O3 matrix. The electrical resistivity of the composites decreased with increasing amount of NbN phase. For a 25 vol% NbN–Al2O3 composite, the values of bending strength, fracture toughness, Vickers hardness, and electrical resistivity were 444.2 MPa, 4.59 MPa·m1/2, 16.62 GPa, and 1.72 × 10−2Ω·cm, respectively, making the composite suitable for electrical discharge machining.  相似文献   

7.
Intermetallic CoAl powder has been prepared via self-propagating high-temperature synthesis (SHS). Dense CoAl materials (99.6% of theoretical) with the combined additions of ZrO2(3Y) and Al2O3 have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The microstructures are such that tetragonal ZrO2 (0.3 μm) and Al2O3 (0.5 μm) particles are located at the grain boundaries of the CoAl (8.5 μm) matrix. Improved mechanical properties are obtained; especially the fracture toughness and the bending strength of the materials with ZrO2(3Y)/Al2O3= 16/4 mol% are 3.87 MPa·m1/2 and 1080 MPa, respectively, and high strength (>600 MPa) can be retained up to 1000°C.  相似文献   

8.
Al2O3–Ni composites were prepared by the reactive hot pressing of Al and NiO. The composites had a two-phase, interpenetrating microstructure and contained ∼35 vol% Ni. They exhibited an impressively high combination of strength and toughness at room temperature; the four-point bending strength was in excess of 600 MPa with a fracture toughness of more than 12 MPa·m1/2. Examination of fracture surfaces showed that Ni ligaments underwent ductile deformation during fracture. SEM analysis revealed knife-edged Ni ligaments with a limited amount of debonding around their periphery (i.e., at the Ni–Al2O3 interface), indicating a strong Ni–Al2O3 bond.  相似文献   

9.
With multi-wall carbon nanotubes (MWNTs) as reinforcement, a 12 vol% MWNTs/alumina (Al2O3) ceramic composite was obtained by hot pressing. A fracture toughness of 5.55±0.26 MPa·m1/2, 1.8 times that of pure Al2O3 ceramics, was achieved. Experimental results showed that the enveloping of carbon nanotubes (CNTs) with sodium dodecyl sulfate (SDS) is effective in changing the hydrophobicity of CNTs to hydrophilicity and improving the dispersion of CNTs in aqueous solution. Enveloped with SDS, CNTs can be homogeneously mixed with Al2O3 at a microscopic level by heterocoagulation. This mixing method can obviously improve the chemical compatibility between CNTs and Al2O3, which is important for enhancement of interfacial strength between them.  相似文献   

10.
A novel method for the preparation of Al2O3–TiN nanocomposites was developed. A mixture of TiO2, AlN, and Ti powder was used as the starting material to synthesize the Al2O3–TiN nanocomposite under 60 MPa at 1400°C for 6 min using spark plasma sintering. X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy were used for detailed microstructural analysis. Dense (up to 99%) nanostructured Al2O3–TiN composites were successfully fabricated, the average grain size being less than 400 nm. The fracture toughness ( K I C ) and bending strength (σb) of the nanostructured Al2O3–TiN composites reached 4.22±0.20 MPa·m1/2 and 746±28 MPa, respectively.  相似文献   

11.
This work presents a novel method for preparing an Al2O3/YAG/ZrO2 ternary eutectic whereby combustion synthesis melt casting has been combined with the ultra-high gravity (UHG) technique. The fabricated product had a relative density of 99.3% of the theoretical one. Phase composition and microstructure analyses indicated that the application of UHG resulted in a metal-free ceramic microstructure with no porosity or microcracks. The microstructure comprises ZrO2 rods dispersed in Al2O3. The product had 17.82 GPa Vickers hardness and 5.51 MPa·m1/2 fracture toughness.  相似文献   

12.
Both tetragonal ( t ) and monoclinic ( m ) ZrO2 particles in ZrO2-toughened Al2O3 can give rise to toughening. In the stress field of propagating cracks, the t -ZrO2 particles can undergo the stress-induced t → m transformation, and the residual stresses around already-transformed m -ZrO2 particles can cause microcracking. The t -ZrO2 particles transformed in crack tip stress fields do not, however, also cause appreciable microcracking. The toughening increments via these distinct mechanisms are comparable. It appears that optimally fabricated Zr02-toughened Al2O3's should contain a mixture of t - and m -ZrO2.  相似文献   

13.
Stable indentation cracks were grown in four-point bend tests to study the fracture toughness of two Y2O3-stabilized ZrO2 ceramics containing 3 and 4 mol% Y2O3. By combining microscopic in situ stable crack growth observations at discrete stresses with crack profile measurements, the dependence of toughness on crack extension was determined from crack extension plots, which graphically separate the crack driving residual stress intensity and applied stress intensity factors. Both materials exhibit steeply rising R -curves, with a plateau toughness of 4.5 and 3.1 Mpa·m1/2 for the 3- and 4-mol% materials, respectively. The magnitude of the plateau toughness reflects the fraction of tetragonal grains contributing to transformation toughening.  相似文献   

14.
The 1.5- to 3-mol%-Y2O3-stabilized tetragonal ZrO2 (Y-TZP) and Al2O3/Y-TZP nanocomposite ceramics with 1 to 5 wt% of alumina were produced by a colloidal technique and low-temperature sintering. The influence of the ceramic processing conditions, resulting density, microstructure, and the alumina content on the hardness and toughness were determined. The densification of the zirconia (Y-TZP) ceramic at low temperatures was possible only when a highly uniform packing of the nanoaggregates was achieved in the green compacts. The bulk nanostructured 3-mol%-yttria-stabilized zirconia ceramic with an average grain size of 112 nm was shown to reach a hardness of 12.2 GPa and a fracture toughness of 9.3 MPa·m1/2. The addition of alumina allowed the sintering process to be intensified. A nanograined bulk alumina/zirconia composite ceramic with an average grain size of 94 nm was obtained, and the hardness increased to 16.2 GPa. Nanograined tetragonal zirconia ceramics with a reduced yttria-stabilizer content were shown to reach fracture toughnesses between 12.6–14.8 MPa·m1/2 (2Y-TZP) and 11.9–13.9 MPa·m1/2 (1.5Y-TZP).  相似文献   

15.
Up to 50 vol% of TiB2, TiC0.5N0.5, TiN, or TiC was added to Y2O3-stabilized tetragonal ZrO2 polycrystals (Y-TZP) and hot pressed under vacuum. The influence of the type of secondary phase on the microstructure and mechanical properties was studied, as a function of the hot-pressing temperature. The influence of the secondary-phase content on the mechanical properties was studied by varying the TiB2 content up to 50 vol%. Fully dense Y-TZP-based composites with very high toughness (up to 10 MPa·m1/2), excellent bending strength (up to 1237 MPa), and increased hardness, with respect to ZrO2 (Vickers hardness up to 1450 kg/mm2), were obtained.  相似文献   

16.
Novel fibrous Al2O3–(m-ZrO2)/t-ZrO2 (m, monoclinic; t, tetragonal) composites having a core/shell structure were fabricated by multi-extrusion, and their microstructures and material properties were investigated depending on the number of extrusions. The composites acquired a homogeneously fine fibrous structure as the number of extrusions increased. The bending strength and fracture toughness increased remarkably as the number of extrusions increased. In the fracture surface of the second passed composite, an Al2O3–(m-ZrO2) core region appeared, flat type, although some local regions existed with an intergranular fracture. However, the fracture mode of the t-ZrO2 region was of intergranular type having a sharp and rough surface. In the composite made by the fifth passed extrusion, the fracture strength and toughness values were high at about 665 MPa and 9.6 MPa·m1/2, respectively. The main fracture mode was a typical intergranular mode having a rough fracture surface, and the main multi-toughening was because of mechanisms such as crack bridging, microcracking, and phase transformation.  相似文献   

17.
The dynamic stress intensity factors, which were determined with newly developed bar impact facilities and a new data reduction procedure, for an Al2O3 ceramic and 29 vol% SiCw/Al2O3 composite were virtually identical, thus indicating that the short SiC whiskers were ineffective under dynamic fracture. SEM studies revealed five distinct fracture morphologies with increased percentage area of transgranular fracture in both materials with rapid crack propagation. Also, the high dynamic stress intensity factor caused multiple microscopic crack planes to form and then join as the crack advanced.  相似文献   

18.
Dense Sic ceramics were obtained by pressureless sintering of β-Sic and α-Sic powders as starting materials using Al2O3-Y2O3 additives. The resulting microstructure depended highly on the polytypes of the starting SiC powders. The microstructure of SiC obtained from α-SiC powder was composed of equiaxed grains, whereas SiC obtained from α-SiC powder was composed of a platelike grain structure resulting from the grain growth associated with the β→α phase transformation of SiC during sintering. The fracture toughness for the sintered SiC using α-SiC powder increased slightly from 4.4 to 5.7 MPa.m1/2 with holding time, that is, increased grain size. In the case of the sintered SiC using β-SiC powder, fracture toughness increased significantly from 4.5 to 8.3 MPa.m1/2 with holding time. This improved fracture toughness was attributed to crack bridging and crack deflection by the platelike grains.  相似文献   

19.
NiAl/10-mol%-ZrO2(3Y) composites of almost full density have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The former intermetallic compound, which contains a trace amount of Al2O3, has been prepared via self-propagating high-temperature synthesis. The composite microstructures are such that tetragonal ZrO2 (∼0.2 μm) and Al2O3 (∼0.5 μm) particles are located at the grain boundaries of the NiAl (∼46 μm) matrix. Improved mechanical properties are obtained: the fracture toughness and bending strength are 8.8 MPa·m1/2 and 1045 MPa, respectively, and high strength (>800 MPa) can be retained up to 800°C.  相似文献   

20.
Al2O3 and SiC composite materials have been produced from mixtures of aluminosilicates (both natural minerals and synthetic) and carbon as precursor materials. These composites are produced by heating a mixture of kaolinite (or synthetic aluminosilicates) and carbon in stoichiometric proportion above 1550°C, so that only Al2O3 and SiC remain as the major phases. A similar process has also been used for synthesizing other composite powders having mixtures of Al2O3, SiC, TiC, and ZrO2 in different proportions (all compounds together or selective mixtures of some of them), as desired. The microstructure of hot-pressed dense compacts, produced from these powders, revealed that the SiC phase is distributed very homogeneously, even occasionally within Al2O3 grains on a nanosize scale. The homogeneous distribution of SiC particles within the system produced high fracture toughness of the hot-pressed material (KIC∼ 7.0 MPa · m1/2) and having Vicker's hardness values greater than 2000 kgf/mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号