首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic transport across Fe3O4/Si interfacial structure has been studied with and without the application of magnetic fields along the interfacial plane, up to 8 kG. Current–voltage (IV) and capacitance–voltage (CV) characteristics across the junction have been recorded for various bias voltages, frequency and magnetic field. The interfacial parameters, such as, ideality factor (n), barrier height (? B0), series resistance (R S) and donor concentration (N D) etc. have been estimated from the characteristics. The interface state density (N SS) and their energy distribution have been estimated by using the interfacial parameters. It has been observed that the N SS decreases as the energy increases from the conduction band edge towards the valence band. A magnetoresistance (MR) of ~40% has been estimated from the IVH data along with its variation with magnetic field. The change of interface state density with the magnetic field shows a similar variation as MR versus H. From the observed variations, the interface states seem to be related to electronic spins. The possibility of an interfacial magnetic silicide or magnetic ions in the interfacial region has been invoked for the observed interface states.  相似文献   

2.
《Solid-state electronics》2006,50(9-10):1532-1539
Temperature dependences of recombination current at interface traps in MOS transistor structure are investigated using the Shockley–Read–Hall Recombination DC current–voltage (R-DCIV) characteristics. Results include the effects of energy distribution of the interface traps (discrete, constant and U-shaped energy distributions) on the temperature dependence of the base terminal current-vs-gate-voltage lineshape (IBVGB), the peak current and voltage (IB-peak, VGB-peak) and their thermal activation energy EA, and the reciprocal slope n of the IB-peak vs base/drain (or base/source) p/n junction forward voltage VBD. Surface impurity concentration and oxide thickness are varied. Temperature dependence of EA, VGB-peak and n is small while IB-peak and R-DCIV linewidth, large. This small temperature dependence simplifies the experimental implementation and data analysis of R-DCIV methodology applied at room temperatures without using expensive temperature controlled wafer-probe station.  相似文献   

3.
The effects of frequency on the alternating-current (AC) conductivity of polycrystalline La0.65Ca0.35MnO3 compounds prepared by solid-state reaction with various heat treatments have been studied. The AC conductivity and magnetoresistance (MR) are affected by the heat treatment temperature. The MR is enhanced at and below the transition temperature (T C). The AC transport behavior of this system shows pronounced negative MR even at small applied magnetic fields for temperatures well below T C. It is observed that such effects originate from spin-dependent scattering at grain boundaries as a consequence of spin disorder at the interfaces of the boundaries and spin scattering within the grains. The real part of the AC conductivity σ′ exhibits a pronounced frequency dependence, measured in the frequency range f < 100 kHz. The minimum occurs at a frequency that is temperature dependent. The MR below T C and the frequency dependence of the AC electrical conductivity σ′(f) are interpreted as being consequences of cluster and grain boundary effects.  相似文献   

4.
We have investigated the structural and electrical characteristics of the Ag/n-TiO2/p-Si/Al heterostructure. Thin films of pure TiO2 were deposited on p-type silicon (100) by optimized pulsed laser ablation with a KrF-excimer laser in an oxygen-controlled environment. X-ray diffraction analysis showed the formation of crystalline TiO2 film having a tetragonal texture with a strong (210) plane as the preferred direction. High purity aluminium and silver metals were deposited to obtain ohmic contacts on p-Si and n-TiO2, respectively. The current–voltage (IV) characteristics of the fabricated heterostructure were studied by using thermionic emission diffusion mechanism over the temperature range of 80–300 K. Parameters such as barrier height and ideality factor were derived from the measured IV data of the heterostructure. The detailed analysis of IV measurements revealed good rectifying behavior in the inhomogeneous Ag/n-TiO2/p-Si(100)/Al heterostructure. The variations of barrier height and ideality factor with temperature and the non-linearity of the activation energy plot confirmed that barrier heights at the interface follow Gaussian distributions. The value of Richardson’s constant was found to be 6.73 × 105 Am?2 K?2, which is of the order of the theoretical value 3.2 × 105 Am?2 K?2. The capacitance–voltage (CV) measurements of the heterostructure were investigated as a function of temperature. The frequency dependence (Mott–Schottky plot) of the CV characteristics was also studied. These measurements indicate the occurrence of a built-in barrier and impurity concentration in TiO2 film. The optical studies were also performed using a UV–Vis spectrophotometer. The optical band gap energy of TiO2 films was found to be 3.60 eV.  相似文献   

5.
The electrical properties and current transport mechanisms of Au/BaTiO3 (BTO)/n-GaN metal–insulator–semiconductor (MIS) structures have been investigated by current–voltage (IV) and capacitance–voltage (CV) measurements at room temperature. Experimental results reveal that the MIS structure has a higher rectification ratio with low reverse leakage current compared with the Au/n-GaN metal–semiconductor (MS) structure. The calculated barrier height of the Au/BTO/n-GaN MIS structure [0.87 eV (IV)/1.02 eV (CV)] increases compared with the Au/n-GaN MS structure [0.73 eV (IV)/0.96 eV (CV)]. The series resistance is extracted using Cheung’s functions, and the values are in good agreement with each other. Furthermore, the energy distribution of the interface state density is estimated from the forward-bias IV data. It is noteworthy that the interface state density of the MIS structure is lower than that of the MS structure. In both MS and MIS structures under forward-bias conditions, ohmic and space-charge-limited conduction mechanisms are identified at lower and higher voltages, respectively. Investigations reveal that Poole–Frenkel emission dominates the reverse leakage current in both Au/n-GaN and Au/BTO/n-GaN structures.  相似文献   

6.
In this work, a resonant microwave-sensitive tunneling diode has been designed and investigated. The device, which is composed of a magnesium oxide (MgO) layer on an amorphous germanium (Ge) thin film, was characterized by means of temperature-dependent current (I)–voltage (V), room-temperature differential resistance (R)–voltage, and capacitance (C)–voltage characteristics. The device resonating signal was also tested and evaluated at 2.9 GHz. The IV curves reflected weak temperature dependence and a wide tunneling region with peak-to-valley current ratio of ~1.1. The negative differential resistance region shifts toward lower biasing voltages as temperature increases. The true operational limit of the device was determined as 350 K. A novel response of the measured RV and CV to the incident alternating-current (ac) signal was observed at 300 K. Particularly, the response to a 100-MHz signal power ranging from the standard Bluetooth limit to the maximum output power of third-generation mobile phones reflects a wide range of tunability with discrete switching property at particular power limits. In addition, when the tunnel device was implanted as an amplifier for a 2.90-GHz resonating signal of the power of wireless local-area network (LAN) levels, signal gain of 80% with signal quality factor of 4.6 × 104 was registered. These remarkable properties make devices based on MgO-Ge interfaces suitable as electronic circuit elements for microwave applications, bias- and time-dependent electronic switches, and central processing unit (CPU) clocks.  相似文献   

7.
Power generation performance of a thermoelectric module consisting of the Heusler Fe2VAl alloy was evaluated. For construction of the module, W-doped Fe2VAl alloys were prepared using powder metallurgy process. Power generation tests of the module consisting of 18 pairs of pn junctions were conducted on a heat source of 373–673 K in vacuum. The reduction of thermal conductivity and improvement of thermoelectric figure of merit by W-doping enhanced the conversion efficiency and the output power. High output power density of 0.7 W/cm2 was obtained by virtue of the high thermoelectric power factor of the Heusler alloy. The module exhibited good durability, and the relatively high output power was maintained after temperature cycling test in air.  相似文献   

8.
In order to interpret in detail the experimentally observed current-voltage-temperature (I-V-T) and capacitance-voltage-temperature (C-V-T) results of Al/p-Si metal-semiconductor Schottky barrier diodes (SBDs) we have been examined the samples in the temperature range of 150-375 K. In the calculation method, to confirm the relationship between the I-V-T and C-V-T results, we have reported a modification which includes the ideality factor, n, and tunnelling parameter δχ1/2 in the forward bias current characteristics. In the intermediate bias voltage region (0.1 < V < 0.6 V), the semi-logarithmic plots of the forward I-V-T curves were found to be linear. From the reverse saturation currents I0 obtained by extrapolating the linear region of curves to zero applied voltage, the values of zero bias barrier heights ?B0 were calculated at each temperature. The values of ideality factor calculated from the slope of each curves were plotted as a function of temperature. The values of n are 3.41-1.40 indicating that the Al/p-Si diode does obey the thermionic field emission (TFE) mechanism rather than the other transport mechanism, particularly at low temperature. The high value of ideality factors is attributed to high density of interface states in the SBDs. The temperature dependence energy density distribution profile of interface state was obtained from the forward bias I-V-T measurements by taking into account the bias dependence of the effective barrier height and ideality factor. The interface states density Nss decreasing with increasing temperature was interpreted by the result of atomic restructuring and reordering at the metal-semiconductor interface. After the modification was made to the forward current expression, we obtained a good agreement between the values of barrier height obtained from both methods over a wide temperature.  相似文献   

9.
《Microelectronic Engineering》2007,84(9-10):1874-1877
The influence of HfO2 thickness (1.6 to 3nm) on interface state density and low field mobility in HfO2/TiN gate n channel MOSFETs have been studied by analyzing experimental data from charge pumping, split CV, DC Id-Vg, pulsed Id-Vg and Y-function methods. It is found that there is no HfO2 thickness dependence on the interface state density, whereas there is continuous electron mobility degradation with HfO2 thickness. The devices exhibited no detectable fast transient charge trapping, allowing the relative contributions of phonon and Coulomb scattering to be examined over temperature. The dependence of the low field mobility on temperature from 50 K to 400 K indicates HfO2 remote phonon scattering as the dominant cause of the mobility degradation.  相似文献   

10.
The electrical properties of a fabricated Au/polymethylmethacrylate (PMMA)/n-InP Schottky barrier diode have been analyzed for different annealing temperatures using current–voltage (IV) and capacitance–voltage (CV) techniques. It is observed that the Au/PMMA/n-InP structure shows excellent rectifying behavior. The extracted barrier height and ideality factor of the as-deposited Au/PMMA/n-InP Schottky contact are 0.68 eV (JV)/0.82 eV (CV) and 1.57, respectively. However, the barrier height (BH) of the Au/PMMA/n-InP Schottky contact increases to 0.78 eV (JV)/0.99 eV (CV) when the contact is annealed at 150°C for 1 min in nitrogen atmosphere. Upon annealing at 200°C, the BH value decreases to 0.72 eV (JV)/0.90 eV (CV) and the ideality factor increases to 1.48. The PMMA layer increases the effective barrier height of the structure by creating a physical barrier between the Au metal and the n-InP. Cheung’s functions are also used to calculate the series resistance of the Au/PMMA/n-InP structure. The interface state density (N ss) is found to be 6.380 × 1012 cm?2 eV?1 and 1.916 × 1012 cm?2 eV?1 for the as-deposited and 150°C-annealed Au/PMMA/n-InP Schottky contacts, respectively. These results indicate that the interface state density and series resistance have a significant effect on the electrical characteristics of Au/PMMA/n-InP Schottky barrier devices. Finally, it is noted that the diode parameters change with increasing annealing temperature.  相似文献   

11.
We have measured the I-V characteristics of Ti/n-GaAs Schottky barrier diodes (SBDs) in the temperature range of 60-320 K by the steps of 20 K. The SBDs have been prepared by magnetron DC sputtering. The ideality factor n of the device has remained almost unchanged between 1.02 and 1.04 from 120 to 320 K, and 1.10 at 100 K. Therefore, it has been said that the experimental I-V data are almost independent of the sample temperature and quite well obey the thermionic emission (TE) model at temperatures above 100 K. Furthermore, the barrier height (BH) Φb0 slightly increased with a decrease in temperature, 320-120 K. The Φb0 versus temperature plot from intercepts of the forward-bias ln I versus V curves has given a BH temperature coefficient of α = −0.090 meV/K. The Norde’s function has been easily carried out to determine the temperature-dependent series resistance values because the TE current dominates in the I-V characteristics. Therefore, the Φb0 versus temperature plot from the Norde’s function has also given a BH temperature coefficient value of α = 0.089 meV/K. Thus, the negligible temperature dependence or BH temperature coefficient close to zero has been attributed to interface defects responsible for the pinning of the Fermi level because their ionization entropy is only weakly dependent on the temperature.  相似文献   

12.
The purpose of this paper is to analyze interface states in Al/SiO2/p-Si (MIS) Schottky diodes and determine the effect of SiO2 surface preparation on the interface state energy distribution. The current-voltage (I-V) characteristics of MIS Schottky diodes were measured at room temperature. From the I-V characteristics of the MIS Schottky diode, ideality factor (n) and barrier height (ΦB) values of 1.537 and 0.763 eV, respectively, were obtained from a forward bias I-V plot. In addition, the density of interface states (Nss) as a function of (Ess-Ev) was extracted from the forward bias I-V measurements by taking into account both the bias dependence of the effective barrier height (Φe), n and Rs for the MIS Schottky diode. The diode shows non-ideal I-V behaviour with ideality factor greater than unity. In addition, the values of series resistance (Rs) were determined using Cheung’s method. The I-V characteristics confirmed that the distribution of Nss, Rs and interfacial insulator layer are important parameters that influence the electrical characteristics of MIS Schottky diodes.  相似文献   

13.
The current-voltage (I-V) characteristics of metal-insulator-semiconductor Al/SiO2/p-Si (MIS) Schottky diodes were measured at room temperature (300 K). In addition, capacitance-voltage-frequency (C-V-f) characteristics are investigated by considering the interface states (Nss) at frequency range 100 kHz to 1 MHz. The MIS Schottky diode having interfacial insulator layer thickness of 33 Å, calculated from the measurement of the insulator capacitance in the strong accumulation region. At each frequency, the measured capacitance decreases with increasing frequency due to a continuous distribution of the interface states. From the I-V characteristics of the MIS Schottky diode, ideality factor (n) and barrier height (Φb) values of 1.766 and 0.786 eV, respectively, were obtained from a forward bias I-V plot. In addition, the interface states distribution profile as a function of (Ess − Ev) was extracted from the forward bias I-V measurements by taking into account the bias dependence of the effective barrier height (Φe) for the Schottky diode. The diode shows non-ideal I-V behaviour with ideality factor greater than unity. This behaviour is attributed to the interfacial insulator layer, the interface states and barrier inhomogeneity of the device. As expected, the C-V curves gave a barrier height value higher than those obtained from I-V measurements. This discrepancy is due to the different nature of the I-V and C-V measurement techniques.  相似文献   

14.
Al/Poly(methyl methacrylate)(PMMA)/p-Si organic Schottky devices were fabricated on a p-Si semiconductor wafer by spin coating of PMMA solution. The capacitance–voltage (CV) and conductance–voltage (GV) characteristics of Al/PMMA/p-Si structures have been investigated in the frequency range of 1 kHz–10 MHz at room temperature. The diode parameters such as ideality factor, series resistance and barrier height were calculated from the forward bias current–voltage (IV) characteristics. In order to explain the electrical characteristics of metal–polymer–semiconductor (MPS) with a PMMA interface, the investigation of interface states density and series resistance from CV and GV characteristics in the MPS structures with thin interfacial insulator layer have been reported. The measurements of capacitance (C) and conductance (G) were found to be strongly dependent on bias voltage and frequency for Al/PMMA/p-Si structures. The values of interface state density (D it) were calculated. These values of D it and series resistance (R s) were responsible for the non-ideal behavior of IV and CV characteristics.  相似文献   

15.
The structural, optical, electrical and electrical–optical properties of a double-junction GaAsP light-emitting diode (LED) structure grown on a GaP (100) substrate by using a molecular beam epitaxy technique were investigated. The pn junction layers of GaAs1?xPx and GaAs1?yPy, which form the double-junction LED structure, were grown with two different P/As ratios. High-resolution x-ray diffraction (HRXRD), photoluminescence (PL), and current–voltage (IV) measurements were used to investigate the structural, optical and electrical properties of the sample. Alloy composition values (x, y) and some crystal structure parameters were determined using HRXRD measurements. The phosphorus compositions of the first and second junctions were found to be 63.120% and 82.040%, respectively. Using PL emission peak positions at room temperature, the band gap energies (Eg) of the first and second junctions were found to be 1.867 eV and 2.098 eV, respectively. In addition, the alloy compositions were calculated by Vegard’s law using PL measurements. The turn-on voltage (Von) and series resistance (Rs) of the device were obtained from the IV measurements to be 4.548 V and 119 Ω, respectively. It was observed that the LED device emitted in the red (664.020 nm) and yellow (591.325 nm) color regions.  相似文献   

16.
The influence of hafnium (Hf) doping on negative-bias temperature instability in zinc-tin oxide thin-film transistors was studied. Hafnium-zinc-tin oxide TFTs exhibited a turn-on voltage (V ON) that shifted from 0 V to ?1 V with negligible changes in the subthreshold swing and field-effect mobility after 3 h of total stresses. The enhanced improvement of the V ON shift (ΔV ON) was attributed to the reduction in the interface trap density, which may result from the suppression of oxygen-vacancy-related defects by the Hf ions.  相似文献   

17.
Semiconducting glasses of the type 40TeO2–(60 ? x) V2O5xSb were prepared by rapid melt quenching and their dc electrical conductivity was measured in the temperature range 180–296 K. For these glassy samples, the dc electrical conductivity ranged from 2.26 × 10?7  S cm?1 to 1.11 × 10?5 S cm?1 at 296 K, indicating the conductivity is enhanced by increasing the V2O5 content. These experimental results could be explained on the basis of different mechanisms (based on polaron-hopping theory) in the different temperature regions. At temperatures above Θ D/2 (where Θ D is the Debye temperature), the non-adiabatic small polaron hopping (NASPH) model is consistent with the data, whereas at temperatures below Θ D/2, a T ?1/4 dependence of the conductivity indicative of the variable range hopping (VRH) mechanism is dominant. For all these glasses crossover from SPH to VRH conduction was observed at a characteristic temperature T R ≤ Θ D/2. In this study, the hopping carrier density and carrier mobility were determined at different temperatures. N (E F), the density of states at (or near) the Fermi level, was also determined from the Mott variables; the results were dependent on V2O5 content.  相似文献   

18.
A device based on a new double-layer-leg thin-film concept has been successfully fabricated by flip-chip bonding of 242 pairs of n-type Bi2Te3 and p-type Sb2Te3 thin-film legs electrodeposited on top substrates to those processed on bottom substrates. Based on the output voltage–current curve, the internal resistance of the double-layer-leg thin-film device was measured to be 3.47 kΩ at an apparent temperature difference of 25.9 K across the device. The actual temperature difference across the thin-film legs was estimated to be 3.51 K, which is ~13% of the apparent temperature difference ΔT of 25.9 K applied across the thin-film device. The double-layer-leg thin-film device exhibited an open-circuit voltage of 0.43 V and maximum output power of 13.1 μW at an apparent temperature difference ΔT of 25.9 K.  相似文献   

19.
Dielectric nanoflakes of Sb2Te3 represent an important advance in science and technology due to their extraordinary properties. Polycrystalline layered Sb2Te3 nanoflakes have been successfully synthesized via a high-throughput chemical route at 60°C. The frequency and temperature dependence of the dielectric constant and dielectric loss of the layered Sb2Te3 nanoflakes have been measured in the frequency range from 30 Hz to 758,000 Hz and temperature range from 313 K to 373 K. As-synthesized Sb2Te3 nanoflakes are shown to be promising alternative dielectrics because of their high dielectric constant (ε′ ≈ 7.3 to 6022) and low dielectric loss (tan δ ≈ 0.2 to 9.2). These higher values of ε′ and lower values of tan δ of Sb2Te3 nanoflakes confirm that capacitors with capacity (C) of ~5.2 pF to 4336 pF may be fabricated for storing renewable energy. Raman spectroscopy confirms that the peak located at ~142 cm?1 corresponds to one in-plane vibrational mode (E g 2 ) of layered Te–Sb–Te–Sb–Te lattice vibration.  相似文献   

20.
We investigated limiting factors of carrier lifetimes and their enhancement by post-growth processes in lightly-doped p-type 4H-SiC epitaxial layers (N A ~ 2 × 1014 cm?3). We focused on bulk recombination, surface recombination, and interface recombination at the epilayer/substrate, respectively. The carrier lifetime of 2.8 μs in an as-grown epilayer was improved to 10 μs by the combination of VC-elimination processes and hydrogen annealing. By employing surface passivation with deposited SiO2 followed by POCl3 annealing, a long carrier lifetime of 16 μs was obtained in an oxidized epilayer. By investigating carrier lifetimes in a self-standing p-type epilayer, it was revealed that the interface recombination at the epilayer/substrate was smaller than the surface recombination on a bare surface. We found that the VC-elimination process, hydrogen annealing, and surface passivation are all important for improving carrier lifetimes in lightly-doped p-type epilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号