首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high specificity of T7 RNA polymerase (RNAP) for its promoter sequence is mediated, in part, by a specificity loop (residues 742-773) that projects into the DNA binding cleft (1). Previous work demonstrated a role for the amino acid residue at position 748 (N748) in this loop in discrimination of the base pairs (bp) at positions -10 and -11 (2). A comparison of the sequences of other phage RNAPs and their promoters suggested additional contacts that might be important in promoter recognition. We have found that changing the amino acid residue at position 758 in T7 RNAP results in an enzyme with altered specificity for the bp at position -8. The identification of two amino acid:base pair contacts (i.e., N748 with the bp at -10 and -11, and Q758 with the bp at -8) provides information concerning the disposition of the specificity loop relative to the upstream region of the promoter. The results suggest that substantial rearrangements of the loop (and/or the DNA) are likely to be required to allow these amino acids to interact with their cognate base pairs during promoter recognition.  相似文献   

2.
3.
4.
5.
4S, 5S, AND 18S + 28S RNA from the newt Taricha granulosa granulosa were iodinated in vitro with carrier-free 125I and hybridized to the denatured chromosomes of Taricha granulosa and Batrachoseps weighti. Iodinated 18S + 28S RNA hybridizes to the telomeric region on the shorter arm of chromosome 2 and close to the centromere on the shorter arm of chromosome 9 from T. granulosa. On this same salamander the label produced by the 5S RNA is located close to or on the centromere of chromosome 7 and the iodinated 4S RNA labels the distal end of the longer arm of chromosome 5. On the chromosomes of B. wrighti, 18S + 28S RNA hybridizes close to the centromeric region on the longer arm of the largest chromosome. Two centromeric sites are hybridized by the iodinated 5S RNA. After hybridization with iodinated 4S RNA, label is found near the end of the shorter arm of chromosome 3. It is concluded that both ribosomal and transfer RNA genes are clustered in the genome of these two salamanders.  相似文献   

6.
7.
8.
9.
It was recently demonstrated that peptide bond formation can occur using an Escherichia coli naked 23S ribosomal RNA without any of the ribosomal proteins. Here, the six domains of the 23S ribosomal RNA were individually synthesized and shown to be capable, when complexed together, of stimulating the reaction. Omission and addition experiments indicated that the activity could be reconstituted solely by domain V at a concentration 10 times higher than that of the intact 23S ribosomal RNA, whereas domain VI could enhance the activity in trans. These findings suggest that fragments of an RNA molecule have the ability to associate into a functional whole.  相似文献   

10.
Translation of HeLa cell RNA containing poly(A) in a wheat germ cell-free system is markedly but incompletely inhibited by 7-methylguanosine 5'-monophosphate (m7G5'p). We have analyzed the translation products synthesized in the presence of different concentrations of m7G5'p and find that translation of all mRNAs is equally inhibited. To demonstrate the specificity of the inhibitor for RNAs with 5'-terminal m7G5' ppp... we show that specific translation products of satellite tobacco necrosis virus RNA, which does not have this 5' terminus, are synthesized in the presence of m7G5' p. Protein synthesis programmed by endogenous mRNA in a HeLa cell-free system is inhibited after a 10-min lag by m7G5' p. Other guanosine nucleotides without the 7-methyl group or with the phosphate in a different position are not inhibitor. We show that translation of all mRNAs is inhibited to a similar extent by m7G5'p in the HeLa cell-free system, by synthesizing 35S-labeled proteins in the presence of different inhibitory concentrations of this nucleotide and analyzing the translation products by electrophoresis and autoradiography. Translation of encephalomyocarditis virus RNA added to the HeLa cell-free system is not inhibited by m7"g5p; this viral RNA does not have this nucleotide at the 5' terminus. This indicates that m7G5'p specifically inhibits translation of mRNAs with the 5' terminus m7G5'ppp... and suggests that initiation of translation of picornavirus RNA may proceed via a mechanism different from that of cellular mRNAs.  相似文献   

11.
The Src homology 2 (SH2) domain-containing protein Grb7 and the erbB2 receptor tyrosine kinase are overexpressed in a subset of human breast cancers. They also co-immunoprecipitate from cell lysates and associate directly in vitro. Whereas the Grb7 SH2 domain binds strongly to erbB2, the SH2 domain of Grb14, a protein closely related to Grb7, does not. We have investigated the preferred binding site of Grb7 within the erbB2 intracellular domain and the SH2 domain residues that determine the high affinity of Grb7 compared with Grb14 for this site. Phosphopeptide competition and site-directed mutagenesis revealed that Tyr-1139 of erbB2 is the major binding site for the Grb7 SH2 domain, indicating an overlap in binding specificity between the Grb7 and Grb2 SH2 domains. Substituting individual amino acids in the Grb14 SH2 domain with the corresponding residues from Grb7 demonstrated that a Gln to Leu change at the betaD6 position imparted high affinity erbB2 interaction, paralleled by a marked increase in affinity for the Tyr-1139 phosphopeptide. The reverse switch at the betaD6 position abrogated Grb7 binding to erbB2. This residue therefore represents an important determinant of SH2 domain specificity within the Grb7 family.  相似文献   

12.
5S ribosomal RNA from Drosophila melanogaster labeled with 125I was used to locate the 5S rRNA genes in chromosomes of D. funebris by means of in situ hybridization. Silver grains were observed at three distinct sites, one of which was a recognized reverse repeat. Only one half of the reverse repeat, however, hybridizes with 5S rRNA and the significance of this phenomenon is discussed. A case of ectopic pairing between two different 5S sites in the genome is reported, and the significance of ectopic pairing is considered.  相似文献   

13.
In the ribosome, the aminoacyl-transfer RNA (tRNA) analog 4-thio-dT-p-C-p-puromycin crosslinks photochemically with G2553 of 23S ribosomal RNA (rRNA). This covalently linked substrate reacts with a peptidyl-tRNA analog to form a peptide bond in a peptidyl transferase-catalyzed reaction. This result places the conserved 2555 loop of 23S rRNA at the peptidyl transferase A site and suggests that peptide bond formation can occur uncoupled from movement of the A-site tRNA. Crosslink formation depends on occupancy of the P site by a tRNA carrying an intact CCA acceptor end, indicating that peptidyl-tRNA, directly or indirectly, helps to create the peptidyl transferase A site.  相似文献   

14.
15.
We have included investigations of the DNA polymorphism of variable numbers of tandem repeat (VNTR) regions with restriction fragment length polymorphism (RFLP) in the genetic evaluations in immigrant cases. HinfI-digested DNA was separated by electrophoresis in agarose gels and hybridized with radiolabelled probes detecting the VNTR systems D2S44 (YNH24), D5S43 (MS8), D7S21 (MS31), D7S22 (g3), and D12S11 (MS43a). We used the matching criterion for paternity testing for the parent/child comparisons, i.e. non-match if the intra gel difference exceeded 1.25 mm. A total of 43 immigration cases involving mainly Turks were investigated with DNA technique in parallel with investigations of 10-15 conventional systems. One man was excluded from paternity by both conventional and DNA investigations. Non-exclusion was observed with both conventional and DNA systems in 97 putative mother/child pairs and in 96 putative father/child pairs. In a putative father/child combination with non-exclusion in 18 genetic systems, a single genetic inconsistency ('exclusion') in D7S21 (MS31) was observed. The frequency distributions of HinfI digested DNA fragments of the five VNTR systems in 105 Turks are presented.  相似文献   

16.
The codon-anticodon interaction on the ribosome occurs in the A site of the 30 S subunit. Aminoglycoside antibiotics, which bind to ribosomal RNA in the A site, cause misreading of the genetic code and inhibit translocation. Biochemical studies and nuclear magnetic resonance spectroscopy were used to characterize the interaction between the aminoglycoside antibiotic paromomycin and a small model oligonucleotide that mimics the A site of Escherichia coli 16 S ribosomal RNA. Upon chemical modification, the RNA oligonucleotide exhibits an accessibility pattern similar to that of 16 S rRNA in the 30 S subunit. In addition, the oligonucleotide binds specifically aminoglycoside antibiotics. The antibiotic binding site forms an asymmetric internal loop, caused by non-canonical base-pairs. Nucleotides that are important for binding of paromomycin were identified by performing quantitative footprinting on oligonucleotide sequence variants and include the C1407.G1494 base-pair, and A.U base-pair at positions 1410/1490, and nucleotides A1408, A1493 and U1495. The asymmetry of the internal loop, which requires the presence of a nucleotide in position 1492, is also crucial for antibiotic binding. Introduction into the oligonucleotide of base changes that are known to confer aminoglycoside resistance in 16 S rRNA result in weaker binding of paromomycin to the oligonucleotide. Oligonucleotides homologous to eukaryotic rRNA sequences show reduced binding of paromomycin, suggesting a physical origin for the species-specific action of aminoglycosides.  相似文献   

17.
18.
Ribosome biogenesis in eucaryotes involves many small nucleolar ribonucleoprotein particles (snoRNP), a few of which are essential for processing pre-rRNA. Previously, U8 snoRNA was shown to play a critical role in pre-rRNA processing, being essential for accumulation of mature 28S and 5.8S rRNAs. Here, evidence which identifies a functional site of interaction on the U8 RNA is presented. RNAs with mutations, insertions, or deletions within the 5'-most 15 nucleotides of U8 do not function in pre-rRNA processing. In vivo competitions in Xenopus oocytes with 2'O-methyl oligoribonucleotides have confirmed this region as a functional site of a base-pairing interaction. Cross-species hybrid molecules of U8 RNA show that this region of the U8 snoRNP is necessary for processing of pre-rRNA but not sufficient to direct efficient cleavage of the pre-rRNA substrate; the structure or proteins comprising, or recruited by, the U8 snoRNP modulate the efficiency of cleavage. Intriguingly, these 15 nucleotides have the potential to base pair with the 5' end of 28S rRNA in a region where, in the mature ribosome, the 5' end of 28S interacts with the 3' end of 5.8S. The 28S-5.8S interaction is evolutionarily conserved and critical for pre-rRNA processing in Xenopus laevis. Taken together these data strongly suggest that the 5' end of U8 RNA has the potential to bind pre-rRNA and in so doing, may regulate or alter the pre-rRNA folding pathway. The rest of the U8 particle may then facilitate cleavage or recruitment of other factors which are essential for pre-rRNA processing.  相似文献   

19.
Phospho-accepting proteins in bovine sera have been detected by the use of immobilized protein kinase from rat muscle and (gamma32P)-ATP in an in vitro system. A partial biochemical characterization points to the generation of typical phosphoproteins. Differences in the phosphorylation pattern between fetal serum and calf serum as demonstrated by electrophoresis in the presence of dodecylsulfate are described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号