首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为提高三维散乱点云自动配准的准确率,提出一种新的基于区域扩张的配准算法。通过局部点云法向量的变化提取特征点,利用区域扩张方法进行初始配准,在搜索精确匹配点的过程中直接剔除错误匹配,使用改进的最近点迭代算法对点云进行精确对齐。实验结果表明,与经典最近迭代点算法和基于曲率的点云自动配准算法相比,该算法能够提升点云配准精度,对特征平滑的点云模型具有较好的效果。  相似文献   

2.
为了有效提高三维水印的透明性、抗噪能力和水印提取准确度,针对三维网格中不固定点云数据,提出一种基于局部特征点提取的三维点云模型水印算法。根据协方差分析提取出三维模型初始特征点,以初始特征点为核心,在它K近邻邻域中,构建不跨越区域最小三角形为嵌入单元的底面,将剩余顶点按照升序排列,寻找合适的嵌入顶点,构建局部嵌入单元,通过改变嵌入顶点信息来嵌入水印。其中通过顶点在平面投影产生的夹角确定水印索引值,实现盲水印。算法通过保留特征点信息,改变非特征点嵌入水印信息能有效提高透明性和抗噪能力,通过限制嵌入单元区域提高水印提取准确率,同时实现了盲水印检测。  相似文献   

3.
基于曲率特征的点云快速简化算法   总被引:2,自引:0,他引:2  
为了提高实体反求的效率,提出一种点云快速简化算法.该算法依据特征点群曲率变化的特点在点云邻域拟合曲面上搜寻特征点并进行储存,依据搜寻结果对点云进行特征点分布评估,并根据评估结果设定相应的简化距离对点云进行简化.算法充分保留了特征区域点云,使得简化后的点云能够较好地表达形状,整个搜寻过程只针对高斯曲率极值点的附近点,相对于需要在全局上进行曲率计算的传统简化算法,该算法在运行速度上具有明显优势.  相似文献   

4.
点云模型自适应增加采样点算法   总被引:1,自引:0,他引:1  
提出一种新的点集模型自适应增加啊采样算法.算法利用最小二乘法求出点云模型上每个点的局部光滑曲面片,并由所求得的曲面多项式计算点集曲面上每个点的曲率.通过对每个点及其邻点进行Voronoi剖分,求取每个点所控制的有效采样区域,然后根据曲率在有效区域内建立采样栅格,求取有效区域内的栅格点在曲面上的投影点即为新增采样点.该方法得到的增加采样模型可以较好地保持原点云模型曲面的几何性质,同时还可以通过选择不同的栅格得到适用于不同处理要求的点云模型.  相似文献   

5.
针对机载LiDAR获得道路的数据信息精确度低问题,提出基于无人机的低空扫描三维点云数据,动态拟合提取分割道路信息的算法.首先使用主成分分析法获得道路点数据的法向量,之后将高程信息和法向量信息结合,利用聚类算法获得道路的高程和法向量的范围,提取道路点云数据;其次利用多项式拟合对道路数据进行数学建模;然后通过动态多项式拟合提取出所有路面数据和路面上的资产以及行人车辆数据;最后使用区域生长算法对路面上的资产以及行人车辆数据进行分割.实验表明算法对道路上的遮挡物有很强的抗干扰能力,可以将路面提取出来并将路面上的数据分割进行分割,将本文算法与区域生长算法进行对比,本文算法对路面数据更加敏感.  相似文献   

6.
点云模型的分片技术是数字几何处理领域的基础技术之一.提出一种尖锐特征诱导的点云模型自动分片算法.算法首先计算点云模型的局部微分属性,并以此来识别模型上的尖锐特征点;然后采用改进的折线生长算法生成并完善特征折线,并基于特征折线采用三次B样条曲线来逼近的尖锐特征点;最后采用区域生长方法将点云模型分割成多个几何特征单一、边界整齐的点云数据面片.实验表明,本文算法运行稳定,可以准确地分割点云模型.该算法可用于点云模型的形状匹配、纹理映射、CAD建模、以及逆向工程等应用中.  相似文献   

7.
王茹  周明全  邢毓华 《计算机工程》2011,37(10):249-251
根据建筑物在高度方向截面上的点云数据必定位于其轮廓线的原理,提出基于聚类平面特征的点云数据精简算法。该算法无需对扫描对象进行表面重构,而是在保持建筑物高度方向数据精度的前提下,对点云数据分层聚类简化,保留满足条件的特征点,删除其余的点。通过实例证明该算法可以在保持建筑物外形特征的同时,达到较高的精简比率。  相似文献   

8.
基于局部重建的点云特征点提取   总被引:2,自引:0,他引:2  
为了有效地提取点云数据中的特征信息,针对采自分片光滑曲面的散乱点云数据,提出一种基于局部重建的鲁棒特征点提取方法.首先基于局部邻域的协方差分析计算每个数据点的特征度量,并通过阈值过滤获取初始特征点集合;然后在每个初始特征点的局部邻域内构建不跨越特征区域,以反映该点局部特征信息的三角形集合;再利用共享近邻算法对构造的三角形法向进行聚类,得到对应局部区域数据点的分类集合;最后对每一类点集拟合平面,通过判断该点是否同时落在多个平面来进行特征点提取.实验结果表明,该方法简单、稳定,对局部邻域选取的大小不敏感,具有一定的抗噪能力;能够在有效提取显著特征的同时,尽可能多地保留相对较弱的特征.  相似文献   

9.
提出采用K-means聚类分析方法对三维点云模型进行分割。论文指出,对于分布呈现类内团聚状三维点云模型,K均值聚类分割可以得到较好的结果。与三维网格模型的K均值聚类分割、点云模型的谱系聚类分割的实验结果比较证实了这一点。  相似文献   

10.
文物点云模型的优化配准算法*   总被引:1,自引:0,他引:1  
目的 针对带有噪声的文物点云模型,采用一种由粗到细的方法来实现其断裂面的精确配准。方法 首先采用一种变尺度点云配准算法实现粗配准,即配准测度函数的尺度参数由大到小逐渐变化,可避免算法陷入局部极值,并获得较高精度的初始配准结果。然后采用基于高斯概率模型的改进迭代最近点(iterative closest point, ICP)算法进行细配准,可以有效地抑制噪声对配准结果的影响,实现断裂面的快速精确匹配。结果 采用兵马俑文物碎块的配准结果表明,该优化配准算法能够实现文物断裂面的精确配准,而且在细配准阶段取得了较高的配准精度和收敛速度。结论 因此说,该优化配准算法是一种快速、精确、抗噪性强的文物点云配准方法。  相似文献   

11.
针对如何提高复杂曲面的三维模型的检索精度的问题,提出了一种基于曲度特征的三维模型检索算法。首先,在模型表面选取随机采样点,计算点所在局部曲面的高斯曲率和平均曲率,通过高斯曲率和平均曲率求出随机点的曲度值,曲度值表明了曲面的凹凸属性。然后,以模型的质心为球心,以随机点与质心距离和曲度值为坐标轴建立坐标系,统计出一定距离范围内曲度值分布的概率,构建距离与曲度的分布矩阵,以此分布矩阵作为三维模型特征描述符。该特征描述符具有旋转不变性和平移不变性,能够很好地反映复杂曲面的几何特征。最后,通过比较分布矩阵给出不同模型间的相似度。实验结果表明,该方法相比形状分布算法的检索性能有较大提高,尤其适用于具有复杂曲面的三维模型检索。  相似文献   

12.
提出了一种基于曲率信息的三维人脸面部特征提取方法。首先根据几何约束和曲率信息得到由若干间断点描述的人脸五官区域轮廓线;其次采用边界连接及变形膨胀方法,得到完全闭合、但存在多余毛刺的区域边界;最后利用二维图像处理方法进行边界精确化处理,提取出比较精确的人脸面部特征区域。实验证明了所提方法对正面自然表情三维人脸模型的有效性。  相似文献   

13.
在光学非接触三维测量中,复杂对象的重构需要多组测量数据的配准。最近点迭代(ICP)算法是三维激光扫描数据处理中点云数据配准的一种经典的数学方法,为了获得更好的配准结果,在ICP算法的基础之上,提出了结合基于特征点的等曲率预配准方法和邻近搜索ICP改进算法的精细配准,自动进行点云数据配准的算法,经对牙齿点云模型实验发现,点云数据量越大,算法的配准速度优势越明显,采用ICP算法的运行时间(194.58 s)远大于本算法的运行时间(89.13 s)。应用实例表明:该算法具有速度快、精度高的特点,算法效果良好。  相似文献   

14.
目的 点云配准是计算机视觉领域里的一个研究热点,其应用领域涉及3维重建、目标识别、颅面复原等多个方面。颅骨配准是颅面复原的一个重要步骤,其配准的正确与否将直接影响到颅面复原的结果。为了提高颅骨配准的精度和收敛速度,提出一种基于局部特征的颅骨点云模型配准方法。方法 首先提取颅骨点云模型的局部深度、法线偏角和点云密度等局部特征;然后计算局部特征点集的相关性,得到相关候选点集,并通过删减外点实现颅骨点云的粗配准;最后采用基于高斯概率模型和动态迭代系数的改进迭代最近点 (ICP) 算法实现颅骨的细配准。结果 通过对公共点云数据模型以及颅骨点云数据模型分别进行配准实验,结果表明,基于局部特征的点云配准算法可以完成点云模型的精确配准,特别是对颅骨点云模型具有较好的配准效果。在颅骨细配准阶段,跟ICP算法相比,改进ICP算法的配准精度和收敛速度分别提高了约30%和60%;跟概率迭代最近点 (PCP) 算法相比,其配准精度差异不大,收敛速度提高了约50%。结论 基于局部特征的点云配准算法不仅可以用于公共点云数据模型的精确配准,而且更适用于颅骨点云数据模型的配准,是一种精度高、速度快的颅骨点云模型配准方法。  相似文献   

15.
根据多分辨率Reeb图(MRG)的原理,提出一种基于关节特征约束的骨架优化算法。它克服了基于曲率约束提取骨架方法中逐点计算顶点的曲率约束轮廓的低效性,通过分析网格顶点的离散高斯曲率,获取模型表面上具有凹陷特性的双曲极值点作为约束点, 进行关节特征区域的有效提取。进而增加关节特性点,优化MRG骨架。实验结果表明,本方法有效地突出了模型的拓扑分支特征以及模型表面的细节,提高了骨架提取的精度和效率。  相似文献   

16.
高工  杨红雨  刘洪 《计算机应用》2021,41(9):2736-2740
为了增强三维点云人脸识别系统针对多表情、多姿态的鲁棒性,提出一种基于深度学习的点云特征提取网络ResPoint.ResPoint网络使用了分组、采样和局部特征提取(ResConv)等模块,而在ResConv模块中使用了跳跃式连接,因此所提网络对于稀疏点云有很好的识别结果.首先通过人脸几何特征点定位鼻尖点,并以该点为中心...  相似文献   

17.
针对点云特征提前取方法在多方向性分析方面的局限性,将Curvelet变换引入点云的分析,研究数据点云不同尺度曲面特征的提取方法。在数据点云分层、扩展预处理的基础上,以第二代离散Curvelet变换分析数据点云,采用软硬阈值折衷法,对表示数据点云边缘的Detail层、Fine层Curvelet变换系数进行处理,增强数据点云的边缘。对增强后的Curvelet变换系数进行Curvelet逆变换,重构数据点云,提取数据点云的边缘,获取曲面特征。实例表明,以Curvelet变换分析为基础的曲面特征提取方法,可以更加准确地提取数据点云的曲面特征。  相似文献   

18.
针对典型的点云配准方法中伪特征点过多导致配准效率低和配准结果不精确的问题,提出一种基于特征点动态选择的三维人脸点云模型重建方法。该方法在粗配准阶段,采用动态特征矩阵求解法获取粗匹配特征变换矩阵以避免伪特征点的干扰。在精配准过程中,采用二次加权法向量垂直距离法在人脸流形表面选择更有效的特征点以减少伪特征点的数量,并采用基于特征融合与局部特征一致性的迭代最近点方法进行精配准。经过对比实验验证了算法的可行性,实验结果表明,提出算法能够实现高精度且快速的三维人脸点云模型重建,且均方根误差达到1.816 5 mm,相较于其他算法,在模型重建精度和效率方面都有所提升,具有良好的应用前景。  相似文献   

19.
基于多判别参数混合方法的散乱点云特征提取   总被引:1,自引:0,他引:1  
针对以往散乱点云特征提取算法存在尖锐特征点提取不完整以及无法保留模型边界点的问题,提出了一种多个判别参数混合方法的特征提取算法。首先,对点云构建k-d tree,利用k-d tree建立点云k邻域;然后,针对每个k邻域计算数据点曲率、点法向与邻域点法向夹角的平均值、点到邻域重心的距离、点到邻域点的平均距离;最后,据此四个参数定义特征阈值和特征判别参数,特征判别参数大于阈值的点即为特征点。实验结果表明,与已有算法相比,该算法不仅可以有效提取尖锐特征点,而且能够识别边界点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号