首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解析木塑复合材料的界面相容性机制,通过介电弛豫过程分析研究不同硅烷偶联剂添加量的毛白杨木粉/聚丙烯复合材料的温度谱及频率谱,并计算介电弛豫过程中的表观活化能和热力学量。结果表明:在添加硅烷偶联剂的毛白杨木粉/聚丙烯复合材料中能观察到基于木材细胞壁无定形区中伯醇羟基的回转取向运动的弛豫过程;弛豫强度随硅烷偶联剂添加量增大先减少而后缓慢增大;随偶联剂添加量的增大,弛豫时间分布峰呈先变宽、变低,然后再变尖、变高趋势;表观活化能、活化焓、活化自由能和活化熵随硅烷偶联剂添加量增加先增大后减小。表观活化能在硅烷偶联剂添加量(质量比)为2.0%时达到最大值(28.12kJ/mol),与未添加偶联剂的毛白杨木粉/聚丙烯复合材料的(13.86kJ/mol)相比增加2倍以上,活化焓在硅烷偶联剂添加量从0%时的12.09kJ/mol增大到2.0%时的26.35kJ/mol,增大了117.9%,说明弛豫过程中伯醇羟基回转取向运动需要克服的能垒增加,毛白杨木粉与聚丙烯塑料的相容性更好,结合更紧密,界面强度更强,性能更加稳定。  相似文献   

2.
不同改性剂对PP/木粉复合材料性能的影响   总被引:1,自引:0,他引:1  
研究了苯甲酸(BA)、硬脂酸(SA)、甲苯-2,4-二异氰酸酯(TDI)对聚丙烯/木粉复合材料的改性效果。结果表明,木粉经改性剂处理后,表面极性减弱,与聚丙烯的界面张力降低,相容性提高;所有改性剂均可提高复合材料的拉伸强度、冲击强度以及熔体流动性能,但对弯曲强度影响不大。用TDI/SA复合处理木粉,复合材料的综合性能最好。扫描电镜(SEM)分析表明,木粉经过处理后,木粉与聚丙烯间界面较模糊。  相似文献   

3.
Wood fibre reinforced polypropylene composites at fibre content 50% by weight have been prepared and different types of wood fibres (hard wood fibre, soft wood fibre, long wood fibre and wood chips) were treated with coupling agent (MAH-PP) to increase the interfacial adhesion with the matrix to improve the dispersion of the particles and to decrease the water sorption properties of the final composite.The present study investigated the tensile, flexural, charpy impact and impact properties of wood fibre reinforced polypropylene composites as a function of coupling agent and fibre length and structure.From the results it is observed that wood chips-PP composites showed better tensile and flexural properties comparative with the other wood fibre-PP composites with the addition of 5%MAH-PP, which is around 65% and 50% for tensile strength and flexural strength respectively. Hard wood fibre-PP composites showed better impact characteristic values comparative to other wood fibre-PP composites with the addition of 5%MAH-PP and damping index decreased about to 60%. Charpy impact strength also increased up to 60% with the addition of 5%MAH-PP for long wood fibre-PP composites. Water absorption and scanning electron microscopy of the composites are also investigated.  相似文献   

4.
Hygroscopicity, low durability, and low thermal resistance are disadvantages of lignocellulosic materials that also plague wood-plastic composites (WPCs). Hemicellulose is the most hydrophilic wood polymer and is currently considered as a sugar source for the bioethanol industry. The objective of this research is to extract hemicellulose from woody materials and enhance the properties of WPC by diminishing the hydrophilic character of wood. Hemicellulose of Southern Yellow Pine was extracted by hot-water at three different temperatures: 140, 155, and 170 °C. Wood flour was compounded with polypropylene in an extruder, both with and without a coupling agent. Injection molding was used to make tensile test samples. The thermal stability of wood flour was found to have increased after extraction. Extraction of hemicellulose improved the tensile strength and water resistance of composites, which may indicate a decrease in the hygroscopicity of wood flour, better compatibility, and interfacial bonding of the filler and matrix.  相似文献   

5.
采用原位反应复合的方法研究制备了长支化聚丙烯(LCBPP)/木粉(WF)复合材料。FT-IR结果表明,单体季戊四醇三丙烯酸酯(PETA)被接枝到了PP骨架上。多种流变实验测试结果(黏度曲线,储能模量)证实了长支化聚丙烯的存在。复合材料性能测试表明,长支化反应提高了木塑材料的冲击强度和拉伸强度,最大幅度分别达到29.44%和27.75%。其原因在于LCBPP与木粉颗粒的相容性较好,这由SEM照片得到了证实。  相似文献   

6.
《Composites Part A》2007,38(8):1922-1931
This study focused on manufacturing of highly filled cellulose fibre–polypropylene composites and evaluation of the mechanical properties of the composites. Cellulose fibre reinforced polypropylene composites with up to 60 wt% of fibres with and without coupling agent were manufactured by extrusion. In order to achieve consistent feeding of the fibres into the extruder a pelletization technique was used where the fibres were pressed into pellets. Two commercial grades of cellulose fibres were used in the study, bleached sulfite and bleached kraft fibres. Fibre dimension measurements showed that the pelletization process and extrusion at high fibre loading caused the most severe fibre breakage. Flexural testing showed that increased fibre loading made the composites stiffer but reduced the toughness. Addition of maleic anhydride grafted coupling agent (MAPP) increased the stiffness and strength of the composites significantly. In general, there was no significant difference in the mechanical properties between the composites with kraft and sulfite fibres. An interesting finding was that the flexural modulus and strength of the MAPP modified cellulose fibre–polypropylene composites were not higher than what has previously been reported for wood flour–polyolefin composites. Scanning electron microscopy showed that addition of coupling agent improved the interfacial adhesion between the fibres and polypropylene matrix.  相似文献   

7.
This paper investigated the stability, mechanical properties, and the microstructure of wood–plastic composites, which were made using either recycled or virgin high-density polyethylene (HDPE) with wood flour (Pinus radiata) as filler. The post-consumer HDPE was collected from plastics recycling plant and sawdust was obtained from a local sawmill. Composite panels were made from recycled HDPE through hot-press moulding exhibited excellent dimensional stability as compared to that made from virgin HDPE. The tensile and flexural properties of the composites based on recycled HDPE were equivalent to those based on virgin HDPE. Adding maleated polypropylene (MAPP) by 3–5 wt% in the composite formulation significantly improved both the stability and mechanical properties. Microstructure analysis of the fractured surfaces of MAPP modified composites confirmed improved interfacial bonding. Dimensional stability and strength properties of the composites can be improved by increasing the polymer content or by addition of coupling agent. This project has shown that the composites treated with coupling agents will be desirable as building materials due to their improved stability and strength properties.  相似文献   

8.
Polypropylene/wood flour composites with different fibre content were prepared. The effect of composition and the incorporation of maleinated polypropylene on the materials tensile and fracture and failure behaviour was investigated. Reliable fracture toughness data that will be useful for structural applications were obtained. In unmodified composites an increase in Young´s modulus was found with the addition of wood flour to PP, whereas tensile strength, strain at break and fracture toughness were observed to decrease as fibre content increased. The presence of MAPP was beneficial to tensile strength and ductility and had no significant effect on fracture toughness, as a result of enhanced fibre dispersion within the matrix and improved interfacial adhesion. Although reduced ductility and toughness were observed for the composites respect to the matrix, in the case of modified composites, environmentally friendly stiffer materials were obtained with cost saving without sacrificing strength.  相似文献   

9.
挤出成型PP木塑复合材料的力学性能与改性研究   总被引:1,自引:0,他引:1  
以聚丙烯(PP)为塑料基体,以木粉为填料,并加入添加剂,用挤出成型法制备了PP基木塑复合材料(PP-WPC),研究了增韧剂、相容剂、偶联剂和颜料对WPC力学性能的影响。结果表明:随着增韧剂POE和EPDM加入量的增加,PP-WPC的冲击强度提高,但弯曲强度和弯曲模量有一定程度的降低,其中POE提高冲击强度的效果优于EPDM;适量加入相容剂或偶联剂能提高PP-WPC的弯曲强度和冲击强度,实验条件下相容剂MAPP最佳用量为8%,偶联剂KH570和KH171最佳用量为1%,其中相容剂提高强度的效果显著优于偶联剂;颜料的加入不同程度地降低了PP-WPC的力学强度,其降低程度顺序为:钛白粉>氧化铁黄>氧化铁红>炭黑。  相似文献   

10.
The main goal of this work was to evaluate the technical feasibility of almond shell flour (ASF) as wood substitute in the production of wood–plastic composites (WPCs). The effects of organically modified montmorillonite (OMMT), as reinforcing agent, on the mechanical and physical properties were also investigated. In order to improve the poor interfacial interaction between the hydrophilic Lignocellulosic material and hydrophobic polypropylene matrix, maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent to all the composites studied. In the sample preparation, OMMT and ASF contents were used as variable factors. The morphology of the specimens was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The results of mechanical properties measurements indicated that when 3 wt.% OMMT were added, tensile and flexural properties reached their maximum values. At high level of OMMT loading (5 wt.%), increased population of OMMT lead to agglomeration and stress transfer gets blocked. The addition of OMMT filler decreased the water absorption and thickness swelling of composites. SEM study approved the good interaction of the almond shell flour with the polymer as well as the effectiveness of OMMT in improvement of the interaction. TEM study revealed better dispersion of silicate layers in WPCs loaded with 3 wt.% of OMMT. The improvement of physico-mechanical properties of composites confirmed that OMMT has good reinforcement and the optimum synergistic effect of OMMT and ASF was achieved at the combination of 3 and 50 wt.%, respectively. The findings indicated that almond shell as agro-waste material is a valuable renewable natural resource for composite production and could be utilized as a substitute for wood in composite industries.  相似文献   

11.
采用模压法制备木粉/聚丙烯复合泡沫材料,并对不同木粉含量的泡沫材料进行静态压缩、循环压缩、压缩蠕变、动态热机械分析的测试,探讨了不同木粉含量的木粉/聚丙烯复合泡沫材料的能量吸收效果。结果表明: 随着木粉含量的增加,木粉/聚丙烯木塑复合泡沫材料的能量吸收量、能量吸收效率参数、松弛率、循环损耗量、动态力学性能等均呈先升后降的趋势,在木粉质量比为30%时泡沫材料吸能性能达到最佳。  相似文献   

12.
曹金星  刘威  张玲 《复合材料学报》2017,34(9):1879-1886
提出了一种通过亚临界流体辅助反应挤出制备木粉/聚丙烯(PP)复合材料的新型制备方法,其关键是在挤出过程中引入流体(乙醇和正丙醇),并使流体处于亚临界状态。同时,对木粉/PP复合材料进行了力学性能测试、FTIR和SEM观察。结果表明:在亚临界流体辅助反应挤出中,木粉发生了溶胀、液化等,有利于马来酸酐接枝聚丙烯渗入到木粉内部,其中酸酐基团与木粉中含有的大量羟基发生酯化反应增强,从而提高了木粉/PP复合材料的界面结合。在亚临界乙醇(190℃,(2.4±0.1)MPa,120r/min)作用下制备的木粉/PP复合材料的力学性能(拉伸强度、弯曲强度、弯曲模量和无缺口冲击强度)与无流体时制备的木粉/PP复合材料相比,其性能得到了一定的提高,它们分别达到了23.5 MPa、52.5 MPa、4.8GPa和5.9kJ·m~(-2)。  相似文献   

13.
The objective of this study was to investigate the incorporation of poplar wood fibers both with and without a novel coupling agent, alkyl ketene dimer (AKD), on the mechanical properties of wood fiber/polypropylene (PP) composites. The resulting properties were compared to those obtained with the most commonly used coupling agent, maleic anhydride grafted PP (MAPP). Tensile and impact strengths of the composites decreased with increasing poplar wood fibers content. Tensile modulus of the composites increased by the incorporation of the wood fibers content up to 70 wt% but further increment in the wood fibers decreased the tensile modulus. At the constant content of poplar wood fibers (70 wt%), the tensile strength determined for the coupled composites with 5% AKD increased by 41% in comparison with the non-coupled composites while the tensile modulus increased by 45%, the impact strength of the coupled composites increased by 38%. The performance of 5% AKD on the mechanical properties of the composites is a little better than 3% MAPP. The good performance of 5% AKD is attributed to the enhanced compatibility between the poplar wood fibers and the polymer matrix. The increase in mechanical properties of the composites demonstrated that AKD is an effective coupling agent for wood fiber/PP composites.  相似文献   

14.
This study examined the effect of type of wood fibre source on the physical and mechanical properties of wood fibre-polypropylene composites. Wood flour, fibres of heat-treated wood and pellets were used as sources of wood fibres in the manufacturing process. All studied wood fibre-polypropylene composites were made from 75% wood, 22% recycled polypropylene (PP) and 3% maleated polypropylene (MAPP). Wood fibre-polypropylene composites were compounded in a conical twin-screw extruder. Water absorption and thickness swelling were studied. Mechanical properties of the composites were characterised by tensile, flexural, and impact testing. Micromechanical deformation processes were investigated using scanning electron microscopy done on the fractured surfaces of broken samples. The durability of composites exposed to three accelerated cycles of water immersion, freezing and thawing was examined. The results showed that the density of the composites was a key factor governing water absorption and thickness swelling. A significant improvement in tensile strength, flexural strength, and Charpy impact strength was observed for composites reinforced with heat-treated fibre compared to composites reinforced with pellets and especially to wood flour reinforced composites. The flexural strength and dimensional stability performance reduced after exposure to freeze-thaw cycling for all composites, but the degree of these changes was dependent on the wood fibre source.  相似文献   

15.
Short untreated and white rot fungi treated hemp fibre, polypropylene (PP) and maleated polypropylene (MAPP) coupling agent were extruded and injection moulded into composite tensile test specimens. The tensile properties of untreated and treated fibre and their composites were measured. The fibre length distributions in the composite were obtained by dissolving the PP/MAPP matrix in boiling xylene to extract the fibre. Both the Single Fibre Pull-Out test and the Bowyer and Bader model were used to determine the interfacial shear strength (IFSS) of these composites. IFSS was found to be lower for the Single Fibre Pull-Out test, which was considered to be largely due to axial loading of fibre and the resulting Poisson’s contraction occurring during this technique. This suggests that the Bowyer and Bader model provides a more relevant value of IFSS for composites. The results obtained from both methods showed that IFSS of the treated fibre composites was higher than that for untreated fibre composites. This supports that the hemp fibre interfacial bonding with PP was improved by white rot fungi treatment.  相似文献   

16.
Recycled polypropylene (RPP) based hybrid composites of date palm wood flour/glass fibre were prepared by different weight ratios of the two reinforcements. Mixing process was carried out in an extruder and samples were prepared by injection molding machine. Recycled PP properties were improved by reinforcing it by wood flour. The tensile strength and Young’s modulus of wood flour reinforced RPP increased further by adding glass fibre. Glass fibre reinforced composites showed higher hardness than other composites. Morphological studies indicated that glass fiber has good adhesion with recycled PP supporting the improvement of the mechanical properties of hybrid composites with glass fiber addition. Addition of as little 5 wt% glass fibre to wood flour reinforced RPP increases the tensile strength by about 18% relative to the wood flour reinforcement alone. An increase in wood particle content in the PP resulted in a decrease in the degree of crystallinity of the polymer. The tensile strength of the composites increased with an increase in the percentage of crystallinity when adding the glass fibre. The improvement in the mechanical properties with the increase in crystallinity percentage (and with the decrease of the lamellar thicknesses) can be attributed to the constrained region between the lamellae because the agglomeration is absent in this case.  相似文献   

17.
采用DMA的Creep模式分别测试了短时间内(15 min)聚丙烯(PP)在不同应力水平和温度下的单向拉伸蠕变行为,长时间内(10 h)连续玻璃纤维增强聚丙烯(CGF/PP)复合材料单层板在不同应力水平和不同纤维角度上的拉伸蠕变行为。利用Burgers黏弹性模型拟合了蠕变测试数据,构建了相关参数与应力水平和纤维角度的依赖性。结果表明:PP和CGF/PP单层板的蠕变柔量均随应力增大而显著增加,稳态蠕变速率也随之增加,蠕变模量保留率明显下降,PP基体的黏弹性主要决定了CGF/PP单层板在低应力水平下的蠕变行为; 30%应力水平下,偏轴拉伸的纤维角度在0°~90°范围内存在拉-剪耦合效应,在45°时最为显著,此时稳态蠕变速率和蠕变变形量最大;利用四元件Burgers黏弹性模型拟合各条件下蠕变曲线得到的数值模型与实验数据具有较好的相关性,相关系数达到0.99,从得到的数值模型可知相关模型参数存在明显的应力和角度依赖关系;利用模型参数的数值拟合公式分别预测10 MPa应力下0°纤维方向的蠕变曲线及45°纤维方向上30%应力水平的偏轴蠕变曲线均与实验曲线一致,表明本文得到的数值模型的可靠性。   相似文献   

18.
In this study, the effects of white-rot fungus (Coriolus versicolor) on the properties of high density polyethylene (HDPE)/wood flour/paper sludge composites were examined. In addition, the effectiveness of using coupling agent on the durability of decayed and undecayed WPCs was investigated. Two different types of sludge materials, namely paper making waste water sludge (PS) and ink-eliminated sludge (IES) were used. The mechanical properties, morphology, and water absorption of fabricated composites were investigated. At a similar wood flour loading, except for modulus of elasticity, the fungi treated composites showed lower mechanical properties (such as modulus of rupture and unnotched Izod impact strength), and higher water absorption compared to untreated composites. According to the results, addition of wood flour decreased the resistance of the composites to moisture and fungal environment. The exposure of the composites to a 4-cycle (2, 24, 48 and 72 h) water immersion caused serious damage to the interfacial adhesion between wood flour and polymer matrix due to contraction and swelling stresses developed during the cyclic exposure. The detrimental effect of fungal treatment on the water uptake of the composites could be explained by the degradation of lignin which made the cellulose content more accessible. Further, it makes chains of cavities that accelerate water absorption. However, the weight losses of all cases of treated composites were low (less than 2.5%), while PS filled composites were more susceptible to white-rot fungi. The addition of coupling agent during the compounding of wood flour and HDPE prevented the colonization and proliferation of fungus on the surface of the composites, and had an advantageous effect on the water uptake and mechanical properties of both treated and untreated composites.  相似文献   

19.
以滑石粉为成核剂,超临界CO_2为发泡剂,采用间歇釜式方法制备微孔发泡木粉/聚丙烯复合材料。采用DSC、XRD和SEM对微孔发泡木粉/聚丙烯复合材料的结晶行为与泡孔结构进行了测定与分析。结果表明:滑石粉的添加能够提高微孔发泡木粉/聚丙烯复合材料的结晶温度,诱导产生不完善的α晶型;能够提高聚合物基体的熔体黏度,减小泡孔尺寸,增加泡孔密度,促使泡孔尺寸分布更均匀,最终能够形成泡孔密度为1.0×10~9个/cm~3、平均泡孔半径为16.4μm、发泡倍率为18倍、表观密度约为0.055g/cm~3的微孔发泡木粉/聚丙烯复合材料。  相似文献   

20.
This study aims to investigate the rheological and mechanical properties of polypropylene when reinforced by wood flour. In the study, wood flour (WF) was added as filling material to polypropylene (PP), and its effects were investigated. The grain size of the wood flour was 300 μm. Wood flour was mixed into polypropylene material at different rates of weight. Viscosity changes of the polypropylene at various temperatures and pressure values of the concentration rates were documented. As a result, viscosity increases as the amount of wood flour filling is increased; yet as temperature, pressure and shear rate are increased, viscosity decreases. The study also focuses on the changes in its mechanical properties of polypropylene reinforced with wood flour. The tensile strength of reinforced polypropylene at varying percentages (wt. 5 %, wt. 10 % and wt. 15 %) was observed to decrease by 11 %, 16 % and 21 %, respectively, compared to that of non‐reinforced polypropylene. Additionally, impact tests showed that the highest energy absorption was in 10 % wood flour reinforced polypropylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号