首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Natural frequencies and mode shapes play a fundamental role in the dynamic characteristics of linear structural systems. Considering that the system parameters are known only probabilistically, we obtain the moments and the probability density functions of the eigenvalues of discrete linear stochastic dynamic systems. Current methods to deal with such problems are dominated by mean‐centred perturbation‐based methods. Here two new approaches are proposed. The first approach is based on a perturbation expansion of the eigenvalues about an optimal point which is ‘best’ in some sense. The second approach is based on an asymptotic approximation of multidimensional integrals. A closed‐form expression is derived for a general rth‐order moment of the eigenvalues. Two approaches are presented to obtain the probability density functions of the eigenvalues. The first is based on the maximum entropy method and the second is based on a chi‐square distribution. Both approaches result in simple closed‐form expressions which can be easily calculated. The proposed methods are applied to two problems and the analytical results are compared with Monte Carlo simulations. It is expected that the ‘small randomness’ assumption usually employed in mean‐centred‐perturbation‐based methods can be relaxed considerably using these methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
声场-结构耦合系统灵敏度分析及优化设计研究   总被引:8,自引:0,他引:8  
给出了低频声-结构耦合系统的有限元方程,并在此基础上提出声一结构耦合系统的包含尺寸和形状设计变量的优化设计模型,建立基于灵敏度分析求解的优化设计方法,重点推导了耦合系统的特征频率和声压级响应关于设计变量的灵敏度方程。在JIFEX软件中实现上述理论和算法,并通过灵敏度比较和优化设计的数值算例,进一步说明该研究方法对声结构耦合系统的工程设计具有实用意义。  相似文献   

4.
The structural dynamic modeling errors, which at times are difficult to eliminate in a structural FE model, can affect the accuracy and reliability of the vibro-acoustic FE models for NVH design of the cavities. A large number of methods have been proposed for structural finite element model updating. However, most of the studies conducted are mainly focused on structural dynamic applications and no work is reported on vibro-acoustic systems. The objective of this paper is to compare through a simulated study two recently proposed methodologies for vibro-acoustic FE model updating of cavities with weak acoustic coupling to address structural dynamic modeling errors. These methodologies utilize a direct and an iterative method of model updating developed for purely structural systems. A simulated example of a 2D rectangular cavity with a flexible surface is presented. Cases of incomplete and noisy data are considered. The comparison is done on the basis of accuracy of prediction of vibro-acoustic natural frequencies and the responses both inside and outside the frequency range of interest. It is concluded that both the methodologies give an accurate prediction of the vibro-acoustic natural frequencies and the response inside the updating frequency range. However, beyond this range, the predictions based on the direct updated vibro-acoustic models are not accurate. It is noted that the success of updating using IESM is dependent on the correct knowledge of the modeling inaccuracies, uncertainties or approximations and also on the choice of the suitable updating parameters, which could be very challenging for complex cavities. The vibro-acoustic FE model updating using the direct method could be handy in such situations where the iterative methods are difficult to be effectively applied.  相似文献   

5.
基于摄动法的多条裂纹欧拉梁特征模态分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于摄动理论推导了带多条开口裂纹的欧拉梁的特征模态参数的理论计算公式。采用最直接的方式将梁开口裂纹模拟成梁微段内的横截面折减并用δ函数表达了带开口裂纹的梁沿轴线的截面惯矩和线质量等物理参数。基于此,建立了裂纹梁动力微分方程,并采用一阶摄动理论推导得到了梁的模态频率和振型计算公式。简支梁及悬臂梁算例研究表明,该方法具有很好的精度,与有限元模拟结果及实验结果都能很好地吻合。并采用此方法分析了裂纹深度和位置对带多条开口裂纹梁的特征模态参数的影响。结果表明,裂纹对各阶模态频率虽然影响有限,但其引起的各阶频率变化有着明显的模式,可用于结构损伤定位;裂纹对模态振型影响不明显,但对模态曲率影响比较大,可用于结构损伤位置和程度的诊断。  相似文献   

6.
In this paper, an improved perturbation method is developed for the statistical identification of structural parameters by using the measured modal parameters with randomness. On the basis of the first‐order perturbation method and sensitivity‐based finite element (FE) model updating, two recursive systems of equations are derived for estimating the first two moments of random structural parameters from the statistics of the measured modal parameters. Regularization technique is introduced to alleviate the ill‐conditioning in solving the equations. The numerical studies of stochastic FE model updating of a truss bridge are presented to verify the improved perturbation method under three different types of uncertainties, namely natural randomness, measurement noise, and the combination of the two. The results obtained using the perturbation method are in good agreement with, although less accurate than, those obtained using the Monte Carlo simulation (MCS) method. It is also revealed that neglecting the correlation of the measured modal parameters may result in an unreliable estimation of the covariance matrix of updating parameters. The statistically updated FE model enables structural design and analysis, damage detection, condition assessment, and evaluation in the framework of probability and statistics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
孙攀旭  杨红  刘庆林 《工程力学》2020,37(11):69-82
混合结构由不同阻尼特性的材料组成,确定其阻尼矩阵存在困难。分块Rayleigh阻尼模型由于数学上的简易性,被广泛用于构建混合结构的阻尼矩阵,但分块Rayleigh阻尼模型的计算精度与参考频率的选择方法直接相关。针对参考频率的选择问题,依据结构动力响应的组成和特点,提出了一种确定Rayleigh阻尼系数的计算方法,进而实现基于分块Rayleigh阻尼模型的复模态叠加法。求解结构的瞬态反应时,根据结构前两阶振型的自振频率确定阻尼系数;求解结构的稳态反应时,选择结构的基频、与外激励频率接近的结构自振频率确定阻尼系数。依据地震波的频谱特性,提出了基于地震波卓越频率的分块Rayleigh阻尼模型,并结合地震加速度的分段线性假定,建立了混合结构的复模态叠加法。在此基础上,利用三角级数展开得到组成地震波的谐波频率,进一步提出了基于谐波频率的分块Rayleigh阻尼模型和对应的复模态叠加法。算例分析结果表明:所提方法误差更小,且克服了传统方法因振型选择不唯一导致的计算结果具有不确定性的问题;与基于地震波卓越频率的复模态叠加法相比,基于谐波频率的复模态叠加法计算量更大,但计算精度更高、适用范围更广。  相似文献   

8.
在建筑结构的健康监测、控制和状态评估中经常遇到的一个关键性问题是如何根据实测响应信号准确估计结构阻尼比及自振频率等模态参数。基于变分模态分解(VMD)提出一种新的结构模态参数识别方法。该方法首先对实测振动信号进行VMD分解,获得单模态信号,然后采用自然环境激励技术(NEXT)得到单模态信号的自由衰减响应,最后利用直接插值法(DI)和曲线拟合获得结构的自振频率和阻尼比。通过三层框架结构的数值模拟验证了该方法的准确性及可靠性。利用该技术对台风“达维”作用下广州中信广场的实测加速度数据进行分析,并将估计的结构模态参数和其他识别方法的分析结果进行对比,进一步验证了该方法的准确性和有效性。  相似文献   

9.
The repeated or closely spaced eigenvalues and corresponding eigenvectors of a matrix are usually very sensitive to a perturbation of the matrix, which makes capturing the behavior of these eigenpairs very difficult. Similar difficulty is encountered in solving the random eigenvalue problem when a matrix with random elements has a set of clustered eigenvalues in its mean. In addition, the methods to solve the random eigenvalue problem often differ in characterizing the problem, which leads to different interpretations of the solution. Thus, the solutions obtained from different methods become mathematically incomparable. These two issues, the difficulty of solving and the non‐unique characterization, are addressed here. A different approach is used where instead of tracking a few individual eigenpairs, the corresponding invariant subspace is tracked. The spectral stochastic finite element method is used for analysis, where the polynomial chaos expansion is used to represent the random eigenvalues and eigenvectors. However, the main concept of tracking the invariant subspace remains mostly independent of any such representation. The approach is successfully implemented in response prediction of a system with repeated natural frequencies. It is found that tracking only an invariant subspace could be sufficient to build a modal‐based reduced‐order model of the system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
提出了一种新的结合特征灵敏度直接法和向量值函数有理逼近的结构动力重分析方法。给出了直接法简单特征对n阶灵敏度分析的一般表达式。利用向量值函数有理逼近,减小固有振型n阶Taylor展开的截断误差。数值算例表明,对结构设计参数作大修改时,该方法能够给出高精度的逼近结果。新方法不需要系统的全部模态,因此,适用于大型复杂结构的动力重分析。  相似文献   

11.
李健  李红影  郭星辉 《振动与冲击》2007,26(3):42-44,67
为解决圆柱壳在工作状态中由几何大变形而引起的弱非线性振动问题,将渐近摄动法引入求解考虑几何非线性的薄壁圆柱壳振动频率。首先,应用Donnell's简化壳理论获得了考虑几何大变形情况下具有位移三次项的非线性频率方程,把位移及频率以非线性参数的幂级数形式展开,并令同次幂的非线性项系数相等,由此得到非线性频率一次近似值与初始振幅的一系列耦合代数方程,引入Galerkin's方法对非线性频率方程进行解耦正交并忽略其中的永年项,考虑了对应实数根,各阶频率对应的振幅间不存在相互耦合的内共振现象,最终在引入小参数后用摄动法求出了非线性频率的一次近似解。计算结果表明,几何非线性使薄壁圆柱壳产生硬化,其非线性频率升高,并同时讨论了线性、非线性频率与节径数及初始位移之间的关系。  相似文献   

12.
Structural elements supporting motors or engines are frequently seen in technological applications. The operation of a machine may introduce additional dynamic stresses on the beam. It is important, then, to know the natural frequencies of the coupled beam-mass system, in order to obtain a proper design of the structural elements. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass system and Bernoulli-Euler multi-span beams carrying multiple spring-mass systems are plenty, but on Timoshenko multi-span beams carrying multiple spring-mass systems is fewer. This paper aims at determining the natural frequencies and mode shapes of a Timoshenko multi-span beam. The model allows to analyse the influence of the shear effect and spring-mass systems on the dynamic behaviour of the beams by using Timoshenko Beam Theory (TBT). The effects of attached spring-mass systems on the free vibration characteristics of the 1–4 span beams are studied. The natural frequencies of Timoshenko multi-span beam calculated by using secant method for non-trivial solution are compared with the natural frequencies of multi-span beam calculated by using Bernoulli-Euler Beam Theory (EBT) in literature; the mode shapes are presented in graphs.  相似文献   

13.
Virtually in all structural systems, and in particular composites, there are uncertainties in the system parameters because of practical bounds on the quality control. In the present work the effect of variations in the mechanical properties of laminated composite cylindrical panels on its natural frequency has been obtained by modeling these as random variables. The transverse shear and rotatory inertia effects have been included in the governing equations. A perturbation approach is presented to obtain the mean and variance of the random natural frequencies. The effects of thickness ratios, edge support conditions and standard deviation of material properties on response of shallow square panels have been investigated. Results have been obtained by employing the finite element method. The approach has been validated by comparison of results with other approaches.  相似文献   

14.
This paper addresses the dynamic analysis of linear systems with uncertain parameters subjected to deterministic excitation. The conventional methods dealing with stochastic structures are based on series expansion of stochastic quantities with respect to uncertain parameters, by means of either Taylor expansion, perturbation technique or Neumann expansion and evaluate the first- and second-order moments of the response by solving deterministic equations. Unfortunately, these methods lead to significant error when the coefficients of variation of uncertainties are relatively large. Herein, an improved first-order perturbation approach is proposed, which considers the stochastic quantities as the sum of their mean and deviation. Comparisons with conventional second-order perturbation approach and Monte Carlo simulations illustrate the efficiency of the proposed method. Applications are discussed in order to investigate the influence of mass, damping and stiffness uncertainty on the dynamic response of the system.  相似文献   

15.
Abstract

Modelling of plates with internal defects or cut outs is often an issue in the traditional isogeometric methods and hence extended isogeometric methods are developed. In order to reduce the computational cost involved in extended isogeometric methods based on weak form, a new extended isogeometric hybrid collocation–Galerkin method is proposed in the present paper. The natural frequencies of a homogeneous and functionally graded material plate with internal defects of varying gradient index, sizes and shapes are obtained using the proposed method. The obtained results are compared and found to be in good agreement with the reference results.  相似文献   

16.
基于测量位移和频率的结构损伤二次识别方法   总被引:1,自引:0,他引:1  
郭惠勇  李正良 《振动与冲击》2007,26(4):94-96,118
为了解决结构多损伤下的位置识别和损伤程度的判定问题,将测量位移和频率用于结构的损伤检测研究,并提出了一种分阶段的二次损伤识别方法。首先考虑测量位移数据量多且包含信息量较大的特点,利用测量的位移数据进行损伤的初次定位识别;然后利用频率的测量精度较高的优势,采用频变法进行结构损伤的定量识别。并针对频变法提出了相应的迭代改进策略,以进一步提高损伤识别的精度。数值仿真结果表明,采用测量位移定位识别可以有效地获得可能的损伤单元,在此基础上利用频变法的迭代改进策略不仅可以得到损伤程度的量化值,而且可以更精确的判断损伤的位置。  相似文献   

17.
The problem of free vibration and reliability of cantilever composite beams featuring structural uncertainties is analyzed. The random structural uncertainties involve material properties, thickness and fiber orientation of the individual constituent laminae. Such uncertainties undoubtedly affect the achievable performance as well as their structural reliabilities. In order to investigate the effects of random structural uncertainties on free vibration problem, a stochastic eigenvalue problem of self-adjoint systems is formulated to provide first and second moments of eigenvalues, i.e., their mean and variance. In this context, a stochastic finite element method based on the mean-centered-second-moment method and first-order perturbation technique are employed during the probabilistic discretization of uncertain distributed-parameter structural systems.Sensitivity and reliability analyses for the uncertain beam when subjected to an external oscillatory load are performed. In addition, in order to mitigate the detrimental effects of uncertainties and so, to render the structure more robust to such effects, the structural tailoring technique is implemented and its beneficial effects are revealed.  相似文献   

18.
基于敏感性分析的周期结构损伤检测   总被引:1,自引:1,他引:0  
朱宏平  何波 《工程力学》2003,20(3):108-114
介绍了一种基于敏感性分析的周期结构损伤检测方法的基本原理。首先得到了具有单一损伤的周期结构固有频率的一般表达式,并运用在不同单元出现损伤时的第一阶自振频率的近似值形成特征值敏感性矩阵;然后通过求解一组基于上述特征值敏感性矩阵的线性方程,识别出结构损伤位置和大小;针对大型结构可能出现多处损伤的特点,文章最后还介绍了一种方法,它不仅能改善计算精度,而且能提高计算效率。理论分析和数值结果表明周期结构自振频率对不同位置损伤的敏感性仅仅与结构单元数目和损伤位置有关,基于敏感性分析的方法能够准确识别出结构的损伤。  相似文献   

19.
This study deals with robust optimum design of tuned mass dampers installed on multi-degree-of-freedom systems subjected to stochastic seismic actions, assuming the structural and seismic model parameters to be uncertain. A new global performance index for evaluating the efficiency of protection systems is proposed, as an alternative to commonly used local performance indices such as the maximum interstorey drift. The latter can be considered a good estimator of seismic damage, but it does not measure the whole structural integrity. The direct perturbation method based on first order approximation is adopted to evaluate the effects of uncertainties on the response. The robust design is formulated as a multi-objective optimization problem, in which both the mean and the standard deviation of the performance index are simultaneously minimized. A comparison of the effectiveness and robustness of tuned mass dampers designed using local or global performance indices is carried out, considering different levels of uncertainty.  相似文献   

20.
Shenyan Chen  Haichao An 《工程优选》2017,49(12):2036-2054
This article presents a mode identification method for structural optimization with global mode constraints to overcome the mode switching problem. In engineering design, the natural frequencies of global vibrations for a complex structure, the orders of which would not be constant in optimization loops, are usually very difficult to constrain. In this case, an incorrect constraint may lead to an unreliable design. A mode identification technique based on modal effective mass fraction is implemented to track the global modes such that the constraints will be updated subsequently and the optimizer can run correctly. A study case with comparison to traditional modal assurance criterion approaches demonstrates the advantages of this technique. An optimization framework has been developed with the new proposed mathematical model. Two numerical optimization examples, of a space truss and a simplified satellite structure, are presented to demonstrate the feasibility and applicability of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号