首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
La-OMS-2催化剂催化甲苯氧化制苯甲醛   总被引:1,自引:0,他引:1  
曹志红  刘文明  项学明 《石油化工》2006,35(11):1069-1073
合成了氧化锰八面体(OMS-2)分子筛,采用离子交换法和浸渍法制备了稀土金属La改性的OMS-2分子筛(La-OMS-2)催化剂,并用于甲苯液相选择性氧化制苯甲醛,考察了催化剂用量、反应温度、反应时间、氧气流量及溶剂种类对甲苯转化率和苯甲醛选择性的影响,对La-OMS-2催化剂进行了X射线衍射表征和BET比表面积测定。实验结果表明,离子交换法制备的La-OMS-2-A催化剂的活性高于浸渍法制备的La-OMS-2-B催化剂,在甲苯0.1mol、溶剂冰乙酸10mL、氧气流量60mL/min、La-OMS-2-A催化剂用量0.10g、反应温度353K、反应时间1.0h的条件下,甲苯转化率达61%,苯甲醛收率为56%。加入La对OMS-2分子筛中的MnO晶格结构产生了影响,提高了苯甲醛的收率。  相似文献   

2.
《石油化工》2016,45(3):291
采用浸渍法合成了不同硅铝比、晶粒大小的复合改性HZSM-5分子筛催化剂,采用XRD、SEM、NH3-TPD、TEM和低温N2吸附等手段对改性前后催化剂的结构进行了表征。在小型固定床等温反应器上考察了HZSM-5分子筛催化剂在甲苯与甲醇烷基化反应中的性能。实验结果表明,在反应温度440℃、重时空速2 h~(-1)、n(甲苯)∶n(甲醇)=2、n(H_2)∶n(H_2O)∶n(甲苯+甲醇)=8∶2∶1的优化反应条件下,具有大晶粒、高硅铝比的复合改性HZSM-5分子筛催化剂上甲苯转化率达26.2%、对二甲苯在异构体中的选择性为95.0%;在复合改性HZSM-5分子筛催化剂的基础上引入加氢金属后,催化剂的稳定性明显提高,在相同反应条件下,甲苯转化率为18%~26%,对二甲苯选择性为90%~96%,稳定运行1 700 h后催化剂未出现明显失活的现象。  相似文献   

3.
制备了一系列负载型Fe-Mo-O/η-Al2O3催化剂,并将其应用于甲苯的气相选择氧化制苯甲醛.并用XRD、IR、XPS等测试手段,对催化剂进行结构表征.研究发现,在空速100.0 h-1、空气/甲苯摩尔比为7.59、MoO3负载量为7.19%、Fe2O3负载量为0.70%、反应温度450℃时,得到甲苯转化率为36.53%、苯甲醛选择性为26.26%、苯甲醛收率为9.23%的较好结果.  相似文献   

4.
以硝酸镁为前驱体,乙酰乙酸乙酯为络合剂,通过络合浸渍的方法制备不同负载量的MgO/MCM-22催化剂。在气相连续流动固定床反应器上,对甲苯与碳酸二甲酯(DMC)烷基化合成对二甲苯的过程进行了研究。采用X射线衍射、N2吸附-脱附、NH3程序升温脱附和吡啶吸附红外光谱等手段对催化剂进行了表征。结果表明,采用乙酰乙酸乙酯为络合剂,可以有效的覆盖分子筛外表面的酸性,避免其孔内酸性受到影响,催化剂能在保持较高甲苯转化率的同时显著提高对二甲苯选择性。在反应温度380℃、n(甲苯)∶n(DMC)=4∶1、空速1h-1条件下,当MgO负载量达到15%时,对二甲苯选择性和甲苯转化率分别为54.0%和34.3%。  相似文献   

5.
将MnSO4、Mn(OAC)2和MnCl(Salen)分别负载于聚苯胺和聚间苯二胺上,制得锰负载的聚苯胺催化剂,用原子吸收光谱、红外光谱和热重等技术对其进行表征,研究其对苯乙烯的催化氧化性能。结果表明:苯乙烯的催化氧化性能可能与催化剂载体、锰源及其负载量有关。三种锰源负载的聚苯胺催化剂均表现出较好的催化活性,以聚间苯二胺为载体负载Mn(OAC)2的催化剂性能最好,在n(苯乙烯)∶n(H2O2)=1∶4,乙腈作为溶剂,60℃反应12h时,苯乙烯转化率为98.5%,苯甲醛选择性为97.6%。  相似文献   

6.
以1,3,5-三甲苯(TMB)为溶剂,研究了萘与甲醇(ME)在SAPO-11分子筛催化剂上的烷基化反应,考察了原料配比、反应温度和空速对萘的转化率及2,6-二甲基萘(2,6-DMN)选择性的影响。实验结果表明,适宜的反应条件为:n(萘)∶n(ME)∶n(TMB)=1.0∶5.0∶3.5,反应温度425℃,空速0.06 h-1。利用CuNO3对SAPO-11分子筛进行浸渍改性,采用BET和NH3-TPD方法对改性前后的SAPO-11分子筛的结构和酸性进行了表征。表征结果显示,改性后的SAPO-11分子筛的比表面积和孔体积减小,总酸量下降。随SAPO-11分子筛上Cu负载量的增加,2,6-DMN的选择性提高,萘的转化率降低。  相似文献   

7.
碳五烯烃转化制丙烯和乙烯   总被引:8,自引:5,他引:3  
用氧化硅作载体,以分子筛为活性组分制备催化剂。考察了反应条件对不同硅铝比的分子筛制备的催化剂对碳五烯烃转化制丙烯和乙烯的活性和稳定性的影响。实验结果表明,在500℃、0.2M Pa、V(水)∶V(油)=0.6、原料空速3h-1的条件下,用高硅铝比(n(S iO2)∶n(A l2O3)=200)分子筛制备的催化剂的活性和选择性比用低硅铝比(n(S iO2)∶n(A l2O3)=50)分子筛制备的催化剂的活性和反应选择性好。在连续240h反应中,碳五烯烃转化率大于80%,丙烯产率大于31%,乙烯产率大于7%。  相似文献   

8.
利用浸渍法制备了Fe-Co-β-SBA-15催化剂,用于苯乙烯催化氧化合成苯甲醛,通过XRD、BET和FT-IR等对催化剂进行了表征。实验结果表明:Fe-Co-β-SBA-15催化剂具有微-介孔复合孔道结构,水热稳定性较好;在反应时间5 h、反应温度100℃、n(H_2O_2)∶n(丙酮)∶n(苯乙烯)=3∶2∶1、催化剂用量0.7 g条件下,苯乙烯的转化率为96.26%,苯甲醛的选择性为93.13%,苯甲醛的收率为89.65%。  相似文献   

9.
整体型海绵镍催化剂催化甲烷部分氧化制合成气   总被引:5,自引:0,他引:5  
利用电沉积法制得的海绵镍制备了整体型海绵镍催化剂,并将其应用于甲烷部分氧化制合成气反应。考察了原料气配比、反应温度、空速、催化剂床层高径比等工艺条件对整体型海绵镍催化剂催化甲烷部分氧化制合成气反应的影响,并对催化剂进行了扫描电镜(SEM)和X射线衍射(XRD)表征。根据研究结果确定优化的工艺条件为:反应温度950℃,空速1.35×105h-1,原料气配比n(CH4)∶n(O2)=1.5,催化剂床层高径比0.75。在此工艺条件下的反应结果:CH转化率约90%,H选择性约80%,CO选择性约90%。  相似文献   

10.
利用浸渍法制备系列负载型Fe-Cu-K-Ce催化剂,并用其进行了CO2加氢合成低碳烯烃研究。考察了不同的载体,载体上活性组分Fe、Cu、K、Ce负载量,焙烧温度,以及反应温度、空速、压力等工艺条件对催化剂活性的影响。结果表明,以MgO-ZSM-5为载体,w(Fe)为15%,且活性组分n(Fe)∶n(Cu)∶n(K)∶n(Ce)为100∶20∶8∶8,在773K下空气中焙烧制得的催化剂在623K、1.0MPa、空速1200h-1反应条件下活性最高,此时CO2转化率可达60%以上,低碳烯烃选择性可达20%以上。对催化剂进行了CO2-TPD、XRD和TEM表征分析。  相似文献   

11.
La_2O_3对NiO/HMCM-56催化剂C_9~+重芳烃加氢脱烷基性能的影响   总被引:1,自引:1,他引:0  
采用等体积浸渍法制备了NiO质量分数6%、La2O3添加量不同的La2O3-NiO/HMCM-56催化剂,考察了La2O3添加量和工艺条件对C9+重芳烃加氢脱烷基反应性能的影响,并采用XRD、H2-TPR、NH3-TPD和BET等技术对催化剂的物化性质进行了研究。实验结果表明,添加La2O3可以提高NiO在催化剂上的分散性,改变催化剂的酸性分布与酸量,改善了催化剂的加氢脱烷基性能;在实验范围内,随La2O3添加量的增加,加氢脱烷基反应的深度增加,C9+重芳烃转化率及苯、甲苯和二甲苯(统称BTX)收率增大,但二甲苯的选择性在La2O3添加量(质量分数)为3%时达到最大。采用La2O3添加量为3%的La2O3-NiO/HMCM-56催化剂,在460℃、3.0MPa、重量空速3.62h-1及V(H2)∶V(C9+)=1600的条件下,C+9重芳烃的转化率、BTX收率及BTX选择性分别为75.23%,63.36%,84.23%。  相似文献   

12.
采用共沉淀法制备了CuO-ZnO-Al2O3催化剂,并以金属氧化物为助剂对其进行了改性,在固定床连续流动反应装置上考察了6种助剂改性的CuO-ZnO-Al2O3催化剂对CO2加氢合成甲醇反应的催化性能。采用N2静态吸附、X射线衍射、H2-程序升温还原等方法对催化剂进行了表征。实验结果表明,用ZrO2或Ag2O改性CuO-ZnO-Al2O3催化剂后,在240℃、2.0MPa、重时空速3600h-1、n(H2):n(CO2)=3:1的反应条件下,CO2转化率提高了约2个百分点,甲醇选择性提高了约4个百分点,甲醇收率提高了约1个百分点;ZrO2改性增大了CuO-ZnO-Al2O3催化剂的比表面积,提高了催化剂表面Cu物种的分散度;Ag2O改性可能使CuO-ZnO-Al2O3催化剂产生了新的活性中心Ag+。  相似文献   

13.
用浸渍法制备了 V2 O5 K2 SO4/ CFG催化剂 ,并用于甲苯选择氧化生成苯甲醛反应。当 V2 O5 和 K2 SO4的重量比为 1∶ 1 ,V2 O5 的负载量为 1 0 %~ 1 2 % ( w)时 ,催化剂的活性最高 ,此时甲苯转化率为 1 1 .98% ,苯甲醛选择性为 93 .0 9%。以 K2 SO4为助催化剂明显优于 Sn O2 和 Ag2 O。 XRD结果说明 ,添加 K2 SO4有利于 V2 O5在 CFG上均匀分散。50 0℃焙烧时 ,有一部分 K2 SO4分解生成 K2 O,它能中和 V2 O5 和 CFG表面上的酸性位 ,使产物易于脱附 ,抑制了副反应 ,增加了生成苯甲醛的选择性。 V2 O5 K2 SO4/ CFG的比表面为 2 8.0 9m2 / g,孔分布为单孔型 ,平均孔径为 2 0 .0 9nm。ESR分析表明 ,在反应过程中有中间体 V4+ 生成 ,是典型的还原氧化机理。  相似文献   

14.
以次磷酸镍和氢氧化铝干胶粉为原料制备Ni2P/γ-Al2O3催化剂;用X射线衍射、氮气吸附脱附和透射电子显微镜等分析测试技术对催化剂结构进行表征。结果表明,负载Ni2P质量分数为15%的Ni2P/γ-Al2O3催化剂的比表面积为166 m2/g,其活性组分Ni2P在γ-Al2O3上具有良好的分散性,颗粒粒径为5~7 nm。以环己烷为模型化合物,在微型固定床反应器上对该催化剂的脱氢反应性能进行评价,在反应温度为420 oC,反应压力为0.5 MPa,质量空速为1 h-1、氢油摩尔比为0.24的条件下,环己烷转化率为98.0%,产物中苯选择性为99.8%。Ni2P/γ-Al2O3催化剂具有较高的环己烷脱氢活性和选择性。  相似文献   

15.
以Na2WO4、Mn、M(M=Ce,Bi,Sr,La)为活性组分,采用浸渍法制备了一系列M-W-Mn/SiO2/堇青石整体式催化剂。在微型固定床反应器中对催化剂的甲烷氧化偶联反应性能进行了评价。采用XRD和TPR对催化剂的结构进行了表征。考察了反应条件对催化性能的影响。催化活性评价结果表明,在较大的空速下,M-W-Mn/SiO2/堇青石整体式催化剂具有较好的甲烷氧化偶联反应性能,其中活性最好的4%Ce-5%Na2WO4-2%Mn/SiO2/堇青石整体式催化剂,在甲烷转化率为32.9%时,甲烷转化率和C2烃选择性之和可达82.9%。XRD结果显示,M-W-Mn/SiO2/堇青石整体式催化剂除了堇青石的特征峰以外,存在α-方石英、Na2WO4、Mn2O3以及一些氧化物的物相。TPR结果显示,催化剂的各活性组分之间存在一定的相互作用,从而对催化剂的甲烷氧化偶联催化反应的性能有不同的影响。  相似文献   

16.
采用HZSM-5沸石催化剂,在反应温度为340℃、甲苯/乙醇摩尔比为1的条件下,考察了空速、N_2/(甲苯+乙醇)摩尔比对烷基化反应的影响。提出了一种筛选反应条件的优化方法。通过用B、La、P、B-La单双离子改性的ZSM-5沸石催化剂进行甲苯/乙醇烷基化反应,都得到了较理想的反应结果。其中用单一硼离子改性的ZSM-5沸石催化剂,甲苯转化率可达22.90%,对甲乙苯选择性为98%。  相似文献   

17.
制备了Pt/ZSM-5催化剂并将其应用于苯与合成气的烷基化反应中。通过研究反应温度、反应压力与进料空速等工艺条件对苯与合成气烷基化反应的工艺条件进行了优化。同时采用XRD、N2吸附-脱附、TEM、NH3-TPD、H2-TPR及XPS等分析手段对Pt/ZSM-5催化剂进行了表征。当反应温度为500 ℃、反应压力为3 MPa、苯质量空速3 h-1、合成气空速12 000 cm3/(g?h)时,将2% Pt/ZSM-5催化剂用于苯与合成气的烷基化反应,苯的转化率达到9.04%,甲苯、二甲苯的总选择性达到82.85%(其中对二甲苯选择性9.18%)。  相似文献   

18.
采用氧化还原沉淀法制备了一系列不同n(Mn)∶n(Zr)的Mn-Zr-O催化剂,并以分子氧为氧化剂,催化苯甲醇氧化反应。实验结果表明,当n(Mn)∶n(Zr)=3∶1时,催化剂的活性最高。在100℃下反应1 h,苯甲醇的转化率达88.3%,催化剂的质量比活性(单位质量催化剂上单位时间内的苯甲醇转化量)为17.7 mmol/(g.h)。XRD、N2物理吸附、XANES及H2-TPR表征结果显示,以+3和+4价共存的非晶态Mn氧化物是活化分子氧氧化苯甲醇的高活性物种,添加Zr能增加催化剂的比表面积,促进Mn氧化物的还原,从而显著提高催化剂在苯甲醇氧化反应中的活性。  相似文献   

19.
负载磷钨酸催化苯与乙烯液相烷基化   总被引:5,自引:2,他引:3  
以负载磷钨酸为催化剂 ,考察催化剂预处理温度、反应温度、原料苯中溶解水量、苯烯摩尔比和苯进料质量空速对苯与乙烯液相烷基化反应的影响。实验表明 ,负载磷钨酸的催化活性和预处理温度密切相关 ,在 2 10℃预处理时 ,催化活性最高 ;负载磷钨酸在 14 0℃以上 ,具有很高的催化活性和很好的乙苯选择性。在优化的反应条件下 ,乙烯的转化率为 10 0 % ,乙苯的选择性大于 90 % ,乙基化的选择性大于 98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号