首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core/shell metal oxide nanoparticles by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.
  相似文献   

5.
6.
Magnetic properties of nanomagnetic and biomagnetic systems are investigated using cantilever magnetometry. In the presence of a magnetic field, magnetic films or particles deposited at the free end of a cantilever give rise to a torque on the mechanical sensor, which leads to frequency shifts depending on the applied magnetic field. From the frequency response, the magnetic properties of a magnetic sample are obtained. The magnetic field dependences of paramagnetic and ferromagnetic thin films and particles are measured in a temperature range of 5-320 K at a pressure below 10(-6) mbar. We present magnetic properties of the ferromagnetic materials Fe, Co and Ni at room temperature and also for the rare earth elements Gd, Dy and Tb at various temperatures. In addition, the magnetic moments of magnetotactic bacteria are measured under vacuum conditions at room temperature. Cantilever magnetometry is a highly sensitive tool for characterizing systems with small magnetic moments. By reducing the cantilever dimensions the sensitivity can be increased by an order of magnitude.  相似文献   

7.
In situ real-time x-ray diffraction was used to study temperature-induced structural changes of 1-5 nm Au, Pt, and AuPt nanocatalysts supported on silicon substrates. Synchrotron-based x-ray diffraction indicates that the as-synthesized Au and Au(64)Pt(36) nanoparticles have a non-crystalline structure, while the Pt nanoparticles have the expected cubic structure. The nanoparticles undergo dramatic structural changes at temperatures as low as 120?°C. During low-temperature annealing, the Au and AuPt nanoparticles first melt and then immediately coalesce to form 4-5 nm crystalline structures. The Pt nanoparticles also aggregate but with limited intermediate melting. The detailed mechanisms of nucleation and growth, though, are quite different for the three types of nanoparticles. Most interestingly, solidification of high-density AuPt nanoparticles involves an unusual transient morphological transformation that affects only the surface of the particles. AuPt nanoparticles on silicon undergo partial phase segregation only upon annealing at extremely high temperatures (800?°C).  相似文献   

8.
9.
10.
A Fano resonance is observed in highly symmetric nanostructures comprising Au nanosphere cores and dielectric shells. It arises from the interference between the narrow plasmon resonance of the Au nanosphere core and the broad scattering background of the dielectric shell. The Fano resonance behavior is dependent on the gap distance between the core and shell and the shell material.  相似文献   

11.
Epoxy systems EPN/BA and EPN/DDS having significantly different cross-link densities have been modified using core–shell rubber particles. The toughening mechanisms have been investigated and the results show that cavitation and particle–matrix debonding play different roles in the low and high cross-link density epoxy resins. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
The effect of temperature on both the electrochemical oxidation of pure ethylene glycol and the reduction of AuCl4 in ethylene glycol at a rotating disk glassy carbon electrode has been investigated using linear sweep voltammetry. As the temperature is increased from 25°C up to 60°C, ethylene glycol begins to oxidize at lower potentials, whereas the reduction potential of AuCl4 is independent of temperature. Reduction current densities, however, increase as temperature increases. Room temperature reduction of several noble metal species in ethylene glycol was also investigated. Metal reduction potentials at both a platinum and a glassy carbon electrodes follow the sequence: AuC14>Ag+>PtC162−>Pd(NH3)42+. The oxidation potential of ethylene glycol at both electrodes was found to be more positive than the reduction potential of the gold, silver, platinum and palladium precursors. These results predict that the spontaneous formation of noble metal particles by chemical reduction with ethylene glycol is thermodynamically unfavorable at 25°C. Gold and silver particles, however, are easily prepared at room temperature using the polyol process, which is a redox based process for the preparation of finely divided metals by chemical reduction of the corresponding metal precursors with ethylene glycol. Since measured potentials are the sum of a thermodynamic and a kinetic contribution (the overpotential), metal reduction in the polyol process seems to be aided by the overpotential. Therefore, measured potentials have been correlated to the chemical conditions at which noble metal particles are synthesized in the polyol process. It was found that as the potential difference between ethylene glycol oxidation and metal reduction increases, both the reaction temperature and time needed for metal synthesis increases. These electrochemical results may contribute to have a better understanding of the fundamentals of the polyol process, and for optimizing such reaction parameters as temperature, time and solution chemistry.  相似文献   

13.
The resonance magnetization dynamics in multilayer nanostructures exposed to transverse and longitudinal magnetic fields is investigated with allowance for biquadratic exchange coupling between the magnetic moments of neighboring layers. It is found that the crystallographic magnetic anisotropy leads to the appearance of a minimum on the field dependence of the resonance frequency for the “acoustic” mode and the accompanying maximum in the magnetic susceptibility.  相似文献   

14.
There has been considerable interest in the synthesis of new nitrides because of their technological and fundamental importance. Although numerous metals react with nitrogen there are no known binary nitrides of the noble metals. We report the discovery and characterization of platinum nitride (PtN), the first binary nitride of the noble metals group. This compound can be formed above 45-50 GPa and temperatures exceeding 2,000 K, and is stable after quenching to room pressure and temperature. It is characterized by a very high Raman-scattering cross-section with easily observed second- and third-order Raman bands. Synchrotron X-ray diffraction shows that the new phase is cubic with a remarkably high bulk modulus of 372(+/-5) GPa.  相似文献   

15.
16.
Structure engineering is an emerging tool to control opto-electronic properties of semiconductors. Recently, control of crystal structure and the formation of a twinning superlattice have been shown for III-V nanowires. This level of control has not been obtained for Si nanowires, the most relevant material for the semiconductor industry. Here, we present an approach, in which a designed twinning superlattice with the zinc blende crystal structure or the wurtzite crystal structure is transferred from a gallium phosphide core wire to an epitaxially grown silicon shell. These materials have a difference in lattice constants of only 0.4%, which allows for structure transfer without introducing extra defects. The twinning superlattices, periodicity, and shell thickness can be tuned with great precision. Arrays of free-standing Si nanotubes are obtained by a selective wet-chemical etch of the core wire.  相似文献   

17.
马瑞婧  尹剑波  赵晓鹏 《功能材料》2013,44(14):1975-1983
磁响应的贵金属核/壳结构复合纳米粒子具有不同于单组分纳米粒子更优越的多重功能,在催化剂、光学材料、生物传感器及生物医学领域具有重要前景。从核/壳结构类型出发,综述了具有磁响应的贵金属核/壳结构纳米复合粒子的化学制备与结构特征,并简要对其应用研究进展做了讨论。  相似文献   

18.
Cai LJ  Wang M  Hu Y  Qian DJ  Chen M 《Nanotechnology》2011,22(28):285601
Sodium salt of poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA) has been employed to prepare a series of stable nanosized metal colloids such as silver, gold, palladium, platinum, and silver-gold alloy nanostructures. All of the as-synthesized products are very stable in water. The metal nanostructures have been directly confirmed by ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction (SAED), and also characterized by techniques such as Fourier transform infrared spectroscopy (FT-IR) and (1)H NMR. Intensive study has found that the metal ions are most probably reduced by organic radicals, generated from the thermal degradation of PSSMA.  相似文献   

19.
W. Göpel 《Thin solid films》1980,69(1):131-135
Reduced surface magnetization due to chemisorption is determined from ferromagnetic resonance (FMR) absorption of nickel and iron thin films. Magnetically “dead” or “live” layers, i.e. layers of decreased or enhanced magnetization in comparison with the bulk, can be excluded at free Ni (111) surfaces. Approximately one hydrogen atom eliminates the contribution of one nickel atom to the surface magnetization. Twice the effect is found for CO at low coverages θ < 0.3.  相似文献   

20.
A simple and efficient route has been employed to deposit noble metal nanoparticles (Pt, Ru, Pt-Ru, Rh, Ru-Sn) onto carbon nanotubes (CNTs) in supercritical methanol solution. In this method, the inorganic metallic salts acted as metal precursors, and methanol as solvent as well as reductant for the precursors. The as-prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. It was demonstrated that the CNTs were decorated by crystalline metal nanoparticles with uniform sizes and a narrow particle size distribution. The size and loading content of the nanoparticles on CNTs could be tuned by manipulating reaction parameters. Furthermore, the formation mechanism of the composites was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号