首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
芯片级封装(CSP:Chip-Scale Packa-ge)技术是指封装体面积略大于裸芯片面积(一般不超过1.2倍)的单芯片封装技术。 几十年来主宰、制约电子组装技术发展的芯片小、封装体大,这一芯片与封装的矛盾  相似文献   

2.
介绍了几种新型芯片封装技术的特点,并对未来的发展趋势及方向进行了初步分析。从中可以看出IC芯片与微电子封装技术相互促进、协调发展密不可分的关系。  相似文献   

3.
高密度封装     
本文介绍了微电路的几种高密度封装,着重介绍当今最盛行的多芯片封装(MCP)、最新的片内系统(SIP)及三维封装等,并指出这是一种实现片上系统的变通方法。  相似文献   

4.
芯片封装技术的发展历程   总被引:2,自引:0,他引:2  
集成电路(IC)的核心是芯片。每块集成电路芯片在使用前都需要封装。封装是IC芯片支撑、保护的必要条件,也是其功能实现的主要组成部分。随着芯片及集成的水平不断提高,电子封装的作用正变得越来越重要。当今芯片封装技术发展也越来越快,以满足不断快速增长的电子产品的需求。文章介绍了几种芯片封装技术的特点,并对未来的发展趋势及方向进行了初步分析。从中可以看出IC芯片与微电子封装技术相互促进,协调发展密不可分的关系。  相似文献   

5.
先进的MEMS封装技术   总被引:5,自引:0,他引:5  
从特殊的信号界面、立体结构、外壳、钝化和可靠性五个方面总结了MEMS封装的特殊性。介绍了几种当前先进的MEMS封装技术:倒装焊MEMS、多芯片(MCP)和模块式封装(MOMEMS)。最后强调,必须加强MEMS封装的研究。  相似文献   

6.
微电子技术的飞速发展也同时推动了新型芯片封装技术的研究和开发。本文主要介绍了几种芯片封装技术的特点,并对未来的发展趋势及方向进行了初步分析。  相似文献   

7.
鲜飞 《半导体技术》2004,29(8):49-52
微电子技术的飞速发展也同时推动了新型芯片封装技术的研究和开发.本文主要介绍了几种芯片封装技术的特点,并对未来的发展趋势及方向进行了初步分析.  相似文献   

8.
先进芯片封装技术   总被引:1,自引:0,他引:1  
鲜飞 《电子与封装》2004,4(4):13-16,4
微电子技术的飞速发展推动了新型芯片封装技术的研究和开发。本文主要介绍了几种新型芯片封装技术的特点,并对未来的发展趋势及方向进行了初步分析。  相似文献   

9.
鲜飞 《电子与封装》2003,3(6):31-34
微电子技术的飞速发展也同时推动了新型芯片封装技术的研究和开发。本文主要介绍了几种新型芯片封装技术的特点,并对未来的发展趋势及方向进行了初步分析。  相似文献   

10.
微电子技术的飞速发展也同时推动了新型芯片封装技术的研究和开发。本文主要介绍了几种新型芯片封装技术的特点,并对未来的发展趋势及方向进行了初步分析。  相似文献   

11.
This paper proposes a In/sub 0.5/Al/sub 0.5/As/In/sub x/Ga/sub 1-x/As/In/sub 0.5/Al/sub 0.5/As (x=0.3-0.5-0.3) metamorphic high-electron mobility transistor with tensile-strained channel. The tensile-strained channel structure exhibits significant improvements in dc and RF characteristics, including extrinsic transconductance, current driving capability, thermal stability, unity-gain cutoff frequency, maximum oscillation frequency, output power, power gain, and power added efficiency.  相似文献   

12.
13.
《Electronics letters》1990,26(1):27-28
AlGaAs/GaInAs/GaAs pseudomorphic HEMTs with an InAs mole fraction as high as 35% in the channel has been successfully fabricated. The device exhibits a maximum extrinsic transconductance of 700 mS/mm. At 18 GHz, a minimum noise figure of 0.55 dB with 15.0 dB associated gain was measured. At 60 GHz, a minimum noise figure as low as 1.6 dB with 7.6 dB associated gain was also obtained. This is the best noise performance yet reported for GaAs-based HEMTs.<>  相似文献   

14.
We report a 12 /spl times/ 12 In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiode (APD) array. The mean breakdown voltage of the APD was 57.9 V and the standard deviation was less than 0.1 V. The mean dark current was /spl sim/2 and /spl sim/300 nA, and the standard deviation was /spl sim/0.19 and /spl sim/60 nA at unity gain (V/sub bias/ = 13.5 V) and at 90% of the breakdown voltage, respectively. External quantum efficiency was above 40% in the wavelength range from 1.0 to 1.6 /spl mu/m. It was /spl sim/57% and /spl sim/45% at 1.3 and 1.55 /spl mu/m, respectively. A bandwidth of 13 GHz was achieved at low gain.  相似文献   

15.
The properties of both lattice-matched and strained doped-channel field-effect transistors (DCFET's) have been investigated in AlGaAs/In/sub x/Ga/sub 1-x/As (0/spl les/x/spl les/0.25) heterostructures with various indium mole fractions. Through electrical characterization of grown layers in conjunction with the dc and microwave device characteristics, we observed that the introduction of a 150-/spl Aring/ thick strained In/sub 0.15/Ga/sub 0.85/As channel can enhance device performance, compared to the lattice-matched one. However, a degradation of device performance was observed for larger indium mole fractions, up to x=0.25, which is associated with strain relaxation in this highly strained channel. DCFET's also preserved a more reliable performance after biased-stress testings.<>  相似文献   

16.
SixCryCzBv thin films with several compositions have been studied for integration of high precision resistors in 0.8 μm BICMOS technology. These resistors, integrated in the back-end of line, have the advantage to provide high level of integration and attractive electrical behavior in temperature, for analog devices. The film morphology and the structure have been investigated through transmission electron microscopy analysis and have been then related to the electrical properties on the base of the percolation theory. According to this theory, and in agreement with experimental results, negative thermal coefficient of resistance (TCR) has been obtained for samples with low Cr content, corresponding to a crystalline volume fraction below the percolation threshold.Samples with higher Cr content exhibit, instead, a variation of the TCR as a function of film thickness: negative TCR values are obtained for thickness lower than 5 nm, corresponding to a crystalline volume fraction below the percolation threshold; positive TCR are obtained for larger thickness, indicating the establishment of a continuous conductive path between the Cr rich grains. This property seems to be determinant in order to assure the possibility to obtain thin film resistors almost independent on the temperature.  相似文献   

17.
We report an Al/sub 0.3/Ga/sub 0.7/N-Al/sub 0.05/Ga/sub 0.95/N-GaN composite-channel HEMT with enhanced linearity. By engineering the channel region, i.e., inserting a 6-nm-thick AlGaN layer with 5% Al composition in the channel region, a composite-channel HEMT was demonstrated. Transconductance and cutoff frequencies of a 1 /spl times/100 /spl mu/m HEMT are kept near their peak values throughout the low- and high-current operating levels, a desirable feature for linear power amplifiers. The composite-channel HEMT exhibits a peak transconductance of 150 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 12 GHz and a peak power gain cutoff frequency (f/sub max/) of 30 GHz. For devices grown on sapphire substrate, maximum power density of 3.38 W/mm, power-added efficiency of 45% are obtained at 2 GHz. The output third-order intercept point (OIP3) is 33.2 dBm from two-tone measurement at 2 GHz.  相似文献   

18.
Nonvolatile memories have emerged in recent years and have become a leading candidate towards replacing dynamic and static random-access memory devices. In this article, the performances of TiO2 and TaO2 nonvolatile memristive devices were compared and the factors that make TaO2 memristive devices better than TiO2 memristive devices were studied. TaO2 memristive devices have shown better endurance performances (108 times more switching cycles) and faster switching speed (5 times) than TiO2 memristive devices. Electroforming of TaO2 memristive devices requires~4.5 times less energy than TiO2 memristive devices of a similar size. The retention period of TaO2 memristive devices is expected to exceed 10 years with sufficient experimental evidence. In addition to comparing device performances, this article also explains the differences in physical device structure, switching mechanism, and resistance switching performances of TiO2 and TaO2 memristive devices. This article summarizes the reasons that give TaO2 memristive devices the advantage over TiO2 memristive devices, in terms of electroformation, switching speed, and endurance.  相似文献   

19.
We report on waveguiding and electrooptic properties of epitaxial Na/sub 0.5/K/sub 0.5/NbO/sub 3/ films grown by radio-frequency magnetron sputtering on Al/sub 2/O/sub 3/(11_02) single crystal substrates. High optical waveguiding performance has been demonstrated in infrared and visible light. The in-plane electrooptic effect has been recorded in transmission using a transverse geometry. At dc fields, the effective linear electrooptic coefficient was determined to 28 pm/V, which is promising for modulator applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号